release: v0.1 initial version

This commit is contained in:
lovez
2026-02-21 10:33:09 +08:00
parent 32a6c49bbe
commit 175ea87fed
2 changed files with 936 additions and 294 deletions

View File

@@ -1,197 +1,303 @@
#!/usr/bin/env python3
"""
ROS1 + MuJoCo VLA 3D 导航 — 全向移动 + 前向扫描 + 避障 + 目标点导航
圆柱体小车: vx, vy, wz 全向移动
前向范围扫描: mj_ray 射线检测
避障: 基于距离的势场/向量场
MuJoCo 全向小车导航(前向射线扫描 + 势场避障 + 目标点导航
- vx, vy, wz 全向移动(车体系输出 -> 世界系执行器)
- mj_ray 扇形前向扫描
- 避障:排斥 + 朝开阔方向绕行
- 卡住检测:连续位移太小 -> 强制脱困策略
"""
from __future__ import annotations
import os
from dataclasses import dataclass
from typing import Optional, Tuple, List
import mujoco
import mujoco.viewer
import numpy as np
import os
SCENE_PATH = os.path.join(os.path.dirname(__file__), "..", "mujoco_scenes", "cylinder_obstacles.xml")
# ============ 可配置参数 ============
NUM_RAYS = 19 # 前向扫描射线数量(-90 ~ +90 deg
RAY_ANGLE_SPAN = np.pi # 扫描角度跨度 (rad)
OBSTACLE_THRESHOLD = 0.45 # 障碍判定距离 (m)
SAFE_DISTANCE = 0.65 # 安全距离
GOAL_THRESHOLD = 0.2 # 到达目标判定距离
MAX_LINEAR = 0.6 # 最大线速度
MAX_ANGULAR = 0.8 # 最大角速度
K_ATTRACT = 1.0 # 目标吸引力
K_REPEL = 0.6 # 障碍排斥力
K_YAW_GOAL = 0.8 # 目标对准角速度增益
MIN_LINEAR = 0.18 # 最小线速度,避免卡住
STUCK_THRESH = 0.03 # 位移阈值,低于此认为卡住 (m)
STUCK_STEPS = 100 # 连续卡住步数触发绕行
GOAL_POINTS = [] # 初始无目标
GOAL_AHEAD_DIST = 2.0 # G 键:目标 = 车头前方 N 米
GOAL_MAX_R = 5.0 # 目标点边界:距离原点不超过此值 (m)
# ===================== 参数配置 =====================
@dataclass
class NavCfg:
# ray scan
num_rays: int = 19
ray_angle_span: float = np.pi # -span/2 ~ +span/2
# distances
obstacle_threshold: float = 0.45
safe_distance: float = 0.65
goal_threshold: float = 0.20
# limits
max_linear: float = 0.60
max_angular: float = 0.80
min_linear: float = 0.18 # 防止“只转不走”或输出趋零卡死
# gains
k_attract: float = 1.0
k_repel: float = 0.6
k_yaw_goal: float = 0.8
# stuck detect
stuck_thresh: float = 0.03
stuck_steps: int = 100
# goal set
goal_ahead_dist: float = 2.0
goal_max_r: float = 5.0
# output smoothing
ema_alpha: float = 0.70
max_dv: float = 0.18
max_dw: float = 0.20
max_dv_stuck: float = 0.25
max_dw_stuck: float = 0.28
def _clamp_goal(gx, gy):
"""目标点边界:限制在距离原点 GOAL_MAX_R 以内"""
r = np.sqrt(gx * gx + gy * gy) + 1e-8
if r > GOAL_MAX_R:
scale = GOAL_MAX_R / r
return (float(gx * scale), float(gy * scale))
return (float(gx), float(gy))
CFG = NavCfg()
def get_agent_state(data, body_id):
"""获取小车位姿: x, y, yaw"""
# ===================== 工具函数 =====================
def clamp_goal(gx: float, gy: float, max_r: float) -> Tuple[float, float]:
r = float(np.hypot(gx, gy)) + 1e-9
if r > max_r:
s = max_r / r
return float(gx * s), float(gy * s)
return float(gx), float(gy)
def wrap_pi(a: float) -> float:
# 更稳定的 [-pi, pi]
return float(np.arctan2(np.sin(a), np.cos(a)))
def get_agent_state(data: mujoco.MjData) -> Tuple[float, float, float]:
# 假设 qpos: x, y, yaw 在 0,1,2
qpos = data.qpos
x, y = qpos[0], qpos[1]
yaw = qpos[2]
return x, y, yaw
return float(qpos[0]), float(qpos[1]), float(qpos[2])
def forward_ray_scan(model, data, body_id, site_id, num_rays, angle_span):
def goal_from_camera(viewer_handle) -> Optional[Tuple[float, float]]:
"""相机视线与 z=0 平面交点(旋转相机后按 C"""
cam = viewer_handle.cam
lookat = np.array(cam.lookat, dtype=float)
dist = float(cam.distance)
az = np.deg2rad(float(cam.azimuth))
el = np.deg2rad(float(cam.elevation))
# MuJoCo viewer 的相机方向约定:这里延续你原实现
fx = np.cos(el) * np.sin(az)
fy = -np.cos(el) * np.cos(az)
fz = np.sin(el)
cam_pos = lookat - dist * np.array([fx, fy, fz], dtype=float)
if abs(fz) < 1e-8:
return None
t = -cam_pos[2] / fz
if t < 0:
return None
pt = cam_pos + t * np.array([fx, fy, fz], dtype=float)
return float(pt[0]), float(pt[1])
# ===================== 射线扫描(预计算优化) =====================
class RayScanner:
"""
前向范围扫描: 在车体前方扇形区域内发射射线
返回: (距离数组, 角度数组)
预计算扇形扫描的 body-frame 方向(基于 forward=[1,0,0], left=[0,1,0]
每帧用 body rotation (xmat) 转到 world减少每帧 cos/sin + 临时数组
"""
site_xpos = data.site_xpos[site_id].copy()
xmat = np.array(data.xmat[body_id]).reshape(3, 3)
forward = xmat[:, 0] # 前向 (body +X)
angles = np.linspace(-angle_span / 2, angle_span / 2, num_rays)
distances = np.full(num_rays, 10.0)
def __init__(self, num_rays: int, angle_span: float):
self.num_rays = int(num_rays)
self.angle_span = float(angle_span)
for i, theta in enumerate(angles):
c, s = np.cos(theta), np.sin(theta)
ray_dir = c * forward + s * xmat[:, 1] # 绕 body Z 旋转
ray_dir = ray_dir / (np.linalg.norm(ray_dir) + 1e-8)
self.angles = np.linspace(-self.angle_span / 2, self.angle_span / 2, self.num_rays)
c = np.cos(self.angles)
s = np.sin(self.angles)
geomid = np.array([-1], dtype=np.int32)
d = mujoco.mj_ray(model, data, site_xpos, ray_dir, None, 1, body_id, geomid)
if d >= 0:
distances[i] = d
# body-frame ray directions: dir_b = c*[1,0,0] + s*[0,1,0]
# shape (N,3)
self.ray_dirs_body = np.stack([c, s, np.zeros_like(c)], axis=1).astype(np.float64)
return distances, angles
# buffers to avoid per-step alloc
self.distances = np.full(self.num_rays, 10.0, dtype=np.float64)
self._geomid = np.array([-1], dtype=np.int32)
def scan(
self,
model: mujoco.MjModel,
data: mujoco.MjData,
body_id: int,
site_id: int,
) -> Tuple[np.ndarray, np.ndarray]:
site_xpos = data.site_xpos[site_id] # view, no copy
xmat = np.array(data.xmat[body_id], dtype=np.float64).reshape(3, 3)
# world dirs: dir_w = xmat @ dir_b
# shape (N,3)
ray_dirs_world = (xmat @ self.ray_dirs_body.T).T
# normalize (理论上已单位,但数值上更稳一点)
norms = np.linalg.norm(ray_dirs_world, axis=1) + 1e-9
ray_dirs_world /= norms[:, None]
self.distances.fill(10.0)
for i in range(self.num_rays):
d = mujoco.mj_ray(
model, data,
site_xpos, ray_dirs_world[i],
None, 1, body_id, self._geomid
)
if d >= 0:
self.distances[i] = float(d)
return self.distances, self.angles
def obstacle_avoidance_vel(distances, angles):
"""
避障速度 + 绕行分量。被挡时朝开阔方向加速,而非只排斥
返回: (vx_avoid, vy_avoid, wz_avoid)
"""
min_d = np.min(distances)
if min_d > OBSTACLE_THRESHOLD:
return 0.0, 0.0, 0.0
# ===================== 速度融合与滤波 =====================
class VelocityFilter:
"""EMA + 速率限制,输出更平滑,避免 ctrl 抖动。"""
vx, vy, wz = 0.0, 0.0, 0.0
safe_sector = np.argmax(distances)
best_theta = angles[safe_sector]
def __init__(self, alpha: float, max_dv: float, max_dw: float):
self.alpha = float(alpha)
self.max_dv = float(max_dv)
self.max_dw = float(max_dw)
self.vx = 0.0
self.vy = 0.0
self.wz = 0.0
for d, theta in zip(distances, angles):
if d < OBSTACLE_THRESHOLD:
ratio = 1.0 - d / OBSTACLE_THRESHOLD
strength = K_REPEL * (ratio ** 2)
vx -= strength * np.cos(theta)
vy -= strength * np.sin(theta)
elif d < SAFE_DISTANCE:
ratio = (SAFE_DISTANCE - d) / (SAFE_DISTANCE - OBSTACLE_THRESHOLD)
strength = K_REPEL * 0.15 * ratio
wz += strength * np.clip(best_theta - theta, -1, 1)
def reset(self):
self.vx = self.vy = self.wz = 0.0
# 绕行:朝最开阔方向加正向速度,避免只退不绕
def update(self, vx_cmd: float, vy_cmd: float, wz_cmd: float) -> Tuple[float, float, float]:
vx_f = self.alpha * self.vx + (1.0 - self.alpha) * vx_cmd
vy_f = self.alpha * self.vy + (1.0 - self.alpha) * vy_cmd
wz_f = self.alpha * self.wz + (1.0 - self.alpha) * wz_cmd
dvx = float(np.clip(vx_f - self.vx, -self.max_dv, self.max_dv))
dvy = float(np.clip(vy_f - self.vy, -self.max_dv, self.max_dv))
dwz = float(np.clip(wz_f - self.wz, -self.max_dw, self.max_dw))
self.vx += dvx
self.vy += dvy
self.wz += dwz
return self.vx, self.vy, self.wz
def goal_attraction_vel(x: float, y: float, yaw: float, goal_x: float, goal_y: float, cfg: NavCfg):
dx = goal_x - x
dy = goal_y - y
dist = float(np.hypot(dx, dy)) + 1e-6
# 世界系单位方向
gx_w = dx / dist
gy_w = dy / dist
# 转车体系(只关心 yaw
c = np.cos(-yaw)
s = np.sin(-yaw)
gx_b = c * gx_w - s * gy_w
gy_b = s * gx_w + c * gy_w
# 线速度(随距离平滑)
scale = float(np.tanh(dist) * 0.8 + 0.2)
vx = cfg.k_attract * scale * gx_b
vy = cfg.k_attract * scale * gy_b
# 角速度(弱对准)
target_yaw = float(np.arctan2(dy, dx))
yaw_err = wrap_pi(target_yaw - yaw)
wz = cfg.k_yaw_goal * float(np.tanh(yaw_err))
return vx, vy, wz
def obstacle_avoidance_vel(distances: np.ndarray, angles: np.ndarray, cfg: NavCfg):
min_d = float(np.min(distances))
if min_d > cfg.obstacle_threshold:
return 0.0, 0.0, 0.0, min_d
# 最开阔方向
safe_i = int(np.argmax(distances))
best_theta = float(angles[safe_i])
vx = 0.0
vy = 0.0
wz = 0.0
# 排斥 + 轻微“扭转”朝开阔方向
# (这里保持你原逻辑,但数值上更稳一点)
for d, th in zip(distances, angles):
d = float(d)
th = float(th)
if d < cfg.obstacle_threshold:
ratio = 1.0 - d / cfg.obstacle_threshold
strength = cfg.k_repel * (ratio * ratio)
vx -= strength * np.cos(th)
vy -= strength * np.sin(th)
elif d < cfg.safe_distance:
ratio = (cfg.safe_distance - d) / (cfg.safe_distance - cfg.obstacle_threshold)
strength = cfg.k_repel * 0.15 * ratio
wz += strength * float(np.clip(best_theta - th, -1.0, 1.0))
# 绕行:朝最开阔方向“推一把”
bypass = 0.35
vx += bypass * np.cos(best_theta)
vy += bypass * np.sin(best_theta)
wz += 0.4 * best_theta
return vx, vy, wz
return vx, vy, wz, min_d
def goal_attraction_vel(x, y, yaw, goal_x, goal_y):
"""
目标吸引力: 在车体坐标系下计算朝目标的 vx, vy, wz
优先保持线速度,角速度仅用于微调朝向
"""
dx = goal_x - x
dy = goal_y - y
dist = np.sqrt(dx * dx + dy * dy) + 1e-6
# 世界系下期望方向
gx_w = dx / dist
gy_w = dy / dist
# 转到车体系
c, s = np.cos(-yaw), np.sin(-yaw)
gx_b = c * gx_w - s * gy_w
gy_b = s * gx_w + c * gy_w
# 线速度:朝目标,随距离平滑
scale = np.tanh(dist) * 0.8 + 0.2
vx = K_ATTRACT * scale * gx_b
vy = K_ATTRACT * scale * gy_b
# 角速度:弱增益,避免只转不走
target_yaw = np.arctan2(dy, dx)
yaw_err = np.arctan2(np.sin(target_yaw - yaw), np.cos(target_yaw - yaw))
wz = K_YAW_GOAL * np.tanh(yaw_err)
return vx, vy, wz
def blend_and_clamp(vx_a, vy_a, wz_a, vx_g, vy_g, wz_g, dist_to_goal, min_d, stuck):
"""融合避障与目标速度,限幅,卡住时强制最小速度"""
def blend_and_clamp(
vx_a: float, vy_a: float, wz_a: float,
vx_g: float, vy_g: float, wz_g: float,
dist_to_goal: float,
stuck: bool,
cfg: NavCfg
):
vx = vx_a + vx_g
vy = vy_a + vy_g
wz = wz_a + wz_g
lin = np.sqrt(vx * vx + vy * vy)
# 未到目标且线速度过小:强制最小速度
if dist_to_goal > GOAL_THRESHOLD and lin < MIN_LINEAR:
lin = float(np.hypot(vx, vy))
# 强制最小速度:未到目标且输出太小
if dist_to_goal > cfg.goal_threshold and lin < cfg.min_linear:
if lin > 1e-6:
vx *= MIN_LINEAR / lin
vy *= MIN_LINEAR / lin
s = cfg.min_linear / lin
vx *= s
vy *= s
else:
# 融合后接近零:优先目标,被挡时朝避障方向
ax, ay = vx_g + vx_a, vy_g + vy_a
anorm = np.sqrt(ax * ax + ay * ay) + 1e-8
vx = MIN_LINEAR * ax / anorm
vy = MIN_LINEAR * ay / anorm
lin = np.sqrt(vx * vx + vy * vy)
if lin > MAX_LINEAR:
scale = MAX_LINEAR / lin
vx *= scale
vy *= scale
wz = np.clip(wz, -MAX_ANGULAR, MAX_ANGULAR)
# 彻底趋零时:优先目标方向(若也为零就不动)
ax = vx_g + vx_a
ay = vy_g + vy_a
an = float(np.hypot(ax, ay)) + 1e-9
vx = cfg.min_linear * ax / an
vy = cfg.min_linear * ay / an
# 卡住脱困:额外加一点“侧向+偏航”,更容易摆脱夹角/凹障碍
if stuck:
# 让它更愿意横移并转一点(避免只顶着障碍)
vx *= 0.85
vy = vy * 1.15 + 0.06 * np.sign(vy if abs(vy) > 1e-3 else 1.0)
wz += 0.10 * np.sign(wz if abs(wz) > 1e-3 else 1.0)
# 限幅
lin = float(np.hypot(vx, vy))
if lin > cfg.max_linear:
s = cfg.max_linear / lin
vx *= s
vy *= s
wz = float(np.clip(wz, -cfg.max_angular, cfg.max_angular))
return vx, vy, wz
class VelocityFilter:
"""EMA 滤波 + 速率限制,平滑控制输出"""
def __init__(self, alpha=0.75, max_dv=0.15, max_dw=0.2):
self.alpha = alpha # 滤波系数,越大越平滑
self.max_dv = max_dv # 每步最大线速度变化
self.max_dw = max_dw # 每步最大角速度变化
self.vx, self.vy, self.wz = 0.0, 0.0, 0.0
def update(self, vx_cmd, vy_cmd, wz_cmd):
# 1. EMA 滤波
vx_f = self.alpha * self.vx + (1 - self.alpha) * vx_cmd
vy_f = self.alpha * self.vy + (1 - self.alpha) * vy_cmd
wz_f = self.alpha * self.wz + (1 - self.alpha) * wz_cmd
# 2. 速率限制
dvx = np.clip(vx_f - self.vx, -self.max_dv, self.max_dv)
dvy = np.clip(vy_f - self.vy, -self.max_dv, self.max_dv)
dwz = np.clip(wz_f - self.wz, -self.max_dw, self.max_dw)
self.vx += dvx
self.vy += dvy
self.wz += dwz
return self.vx, self.vy, self.wz
# ===================== 主程序 =====================
def main():
model = mujoco.MjModel.from_xml_path(SCENE_PATH)
data = mujoco.MjData(model)
@@ -199,163 +305,145 @@ def main():
body_id = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_BODY, "cylinder_agent")
site_id = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_SITE, "ray_origin")
# 执行器索引
act_ids = [
mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_ACTUATOR, "vel_x"),
mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_ACTUATOR, "vel_y"),
mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_ACTUATOR, "vel_yaw"),
]
# actuators
act_vel_x = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_ACTUATOR, "vel_x")
act_vel_y = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_ACTUATOR, "vel_y")
act_vel_yaw = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_ACTUATOR, "vel_yaw")
# goal marker joint
goal_joint_id = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_JOINT, "goal_joint")
goal_qposadr = int(model.jnt_qposadr[goal_joint_id])
def hide_goal_marker():
data.qpos[goal_qposadr: goal_qposadr + 3] = [-99.0, -99.0, 0.1]
def set_goal_marker(gx: float, gy: float):
data.qpos[goal_qposadr] = gx
data.qpos[goal_qposadr + 1] = gy
data.qpos[goal_qposadr + 2] = 0.15
hide_goal_marker()
scanner = RayScanner(CFG.num_rays, CFG.ray_angle_span)
vel_filter = VelocityFilter(alpha=CFG.ema_alpha, max_dv=CFG.max_dv, max_dw=CFG.max_dw)
goals: List[Tuple[float, float]] = []
goal_active = False
goals = GOAL_POINTS.copy()
goal_idx = 0 if goals else -1
vel_filter = VelocityFilter(alpha=0.70, max_dv=0.18, max_dw=0.2)
last_x, last_y = 0.0, 0.0
stuck_cnt = 0
goal_joint_id = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_JOINT, "goal_joint")
goal_qposadr = model.jnt_qposadr[goal_joint_id]
data.qpos[goal_qposadr : goal_qposadr + 3] = [-99, -99, 0.1] # 初始隐藏
# key flags
add_goal_ahead = False
add_goal_camera = False
print("=" * 55)
print("VLA 3D 导航 - 全向移动 + 前向扫描 + 避障")
print("=" * 55)
print("G: 车头前方 {:.0f}m | C: 相机视线 | 目标边界 R<{:.0f}m".format(GOAL_AHEAD_DIST, GOAL_MAX_R))
print("=" * 60)
print("MuJoCo 全向导航:射线扫描 + 避障 + 目标点")
print(f"G: 车头前方 {CFG.goal_ahead_dist:.1f}m | C: 相机视线落点 | 目标边界 R<{CFG.goal_max_r:.1f}m")
print("ESC 退出")
print("=" * 55)
print("=" * 60)
add_goal_ahead = [False]
add_goal_camera = [False]
def key_cb(keycode: int):
nonlocal add_goal_ahead, add_goal_camera
if keycode == 71: # G
add_goal_ahead = True
elif keycode == 67: # C
add_goal_camera = True
def key_cb(keycode):
if keycode == 71: # G
add_goal_ahead[0] = True
elif keycode == 67: # C: 相机视线与地面交点
add_goal_camera[0] = True
def _goal_from_camera(viewer_handle):
"""相机视线与 z=0 地面交点(旋转相机后按 C"""
cam = viewer_handle.cam
lookat = np.array(cam.lookat)
dist = float(cam.distance)
az = np.deg2rad(float(cam.azimuth))
el = np.deg2rad(float(cam.elevation))
# 相机位置 = lookat - dist * 前向单位向量
fx = np.cos(el) * np.sin(az)
fy = -np.cos(el) * np.cos(az)
fz = np.sin(el)
cam_pos = lookat - dist * np.array([fx, fy, fz])
# 射线与 z=0 交点: cam_pos + t*[fx,fy,fz], 令 z=0
if abs(fz) < 1e-6:
return None
t = -cam_pos[2] / fz
if t < 0:
return None
pt = cam_pos + t * np.array([fx, fy, fz])
return (float(pt[0]), float(pt[1]))
def control_callback():
nonlocal goal_idx, last_x, last_y, stuck_cnt
if add_goal_ahead[0]:
add_goal_ahead[0] = False
x, y, yaw = get_agent_state(data, body_id)
gx = x + GOAL_AHEAD_DIST * np.cos(yaw)
gy = y + GOAL_AHEAD_DIST * np.sin(yaw)
gx, gy = _clamp_goal(gx, gy)
goals.clear()
goals.append((gx, gy))
goal_idx = 0
vel_filter.vx = vel_filter.vy = vel_filter.wz = 0.0
print(" 目标: ({:.2f}, {:.2f}) [G=车头前方]".format(gx, gy))
elif add_goal_camera[0]:
add_goal_camera[0] = False
g = _goal_from_camera(viewer)
if g is not None:
g = _clamp_goal(g[0], g[1])
goals.clear()
goals.append(g)
goal_idx = 0
vel_filter.vx = vel_filter.vy = vel_filter.wz = 0.0
print(" 目标: ({:.2f}, {:.2f}) [C=相机视线]".format(g[0], g[1]))
else:
print(" [C] 相机未指向地面,请调整视角后重试")
if goal_idx < 0 or not goals:
data.ctrl[act_ids[0]] = 0
data.ctrl[act_ids[1]] = 0
data.ctrl[act_ids[2]] = 0
vel_filter.vx = vel_filter.vy = vel_filter.wz = 0.0
data.qpos[goal_qposadr : goal_qposadr + 3] = [-99, -99, 0.1] # 藏起标记
return
x, y, yaw = get_agent_state(data, body_id)
goal_x, goal_y = goals[goal_idx]
dist_to_goal = np.sqrt((goal_x - x) ** 2 + (goal_y - y) ** 2)
if dist_to_goal < GOAL_THRESHOLD:
goals.clear()
goal_idx = -1
vel_filter.vx = vel_filter.vy = vel_filter.wz = 0.0
print(" 已到达,停止。按 G 设置新目标")
data.ctrl[act_ids[0]] = 0
data.ctrl[act_ids[1]] = 0
data.ctrl[act_ids[2]] = 0
data.qpos[goal_qposadr : goal_qposadr + 3] = [-99, -99, 0.1]
return
# 更新目标点标记位置
data.qpos[goal_qposadr] = goal_x
data.qpos[goal_qposadr + 1] = goal_y
data.qpos[goal_qposadr + 2] = 0.15
# 1. 前向范围扫描
distances, angles = forward_ray_scan(
model, data, body_id, site_id, NUM_RAYS, RAY_ANGLE_SPAN
)
min_d = np.min(distances)
# 2. 卡住检测
moved = np.sqrt((x - last_x) ** 2 + (y - last_y) ** 2)
if moved < STUCK_THRESH and dist_to_goal > GOAL_THRESHOLD:
stuck_cnt += 1
else:
stuck_cnt = 0
last_x, last_y = x, y
stuck = stuck_cnt > STUCK_STEPS
# 3. 避障速度(含绕行分量)
vx_a, vy_a, wz_a = obstacle_avoidance_vel(distances, angles)
# 4. 目标吸引速度
vx_g, vy_g, wz_g = goal_attraction_vel(x, y, yaw, goal_x, goal_y)
# 5. 融合、最小速度、限幅
vx, vy, wz = blend_and_clamp(
vx_a, vy_a, wz_a, vx_g, vy_g, wz_g, dist_to_goal, min_d, stuck
)
# 6. 滤波 + 速率限制(卡住时放宽)
max_dv = 0.25 if stuck else 0.18
max_dw = 0.28 if stuck else 0.2
vel_filter.max_dv = max_dv
vel_filter.max_dw = max_dw
vx, vy, wz = vel_filter.update(vx, vy, wz)
# 车体系 -> 世界系slide_x/y 沿世界轴)
c, s = np.cos(yaw), np.sin(yaw)
vx_w = vx * c - vy * s
vy_w = vx * s + vy * c
data.ctrl[act_ids[0]] = vx_w
data.ctrl[act_ids[1]] = vy_w
data.ctrl[act_ids[2]] = wz
def stop_output():
data.ctrl[act_vel_x] = 0.0
data.ctrl[act_vel_y] = 0.0
data.ctrl[act_vel_yaw] = 0.0
with mujoco.viewer.launch_passive(model, data, key_callback=key_cb) as viewer:
while viewer.is_running():
mujoco.mj_forward(model, data)
control_callback()
# ========== goal set ==========
nonlocal_vars = None # 仅为了强调这里不用闭包 nonlocal
if add_goal_ahead:
add_goal_ahead = False
x, y, yaw = get_agent_state(data)
gx = x + CFG.goal_ahead_dist * float(np.cos(yaw))
gy = y + CFG.goal_ahead_dist * float(np.sin(yaw))
gx, gy = clamp_goal(gx, gy, CFG.goal_max_r)
goals[:] = [(gx, gy)]
goal_active = True
vel_filter.reset()
print(f" 目标: ({gx:.2f}, {gy:.2f}) [G=车头前方]")
elif add_goal_camera:
add_goal_camera = False
g = goal_from_camera(viewer)
if g is None:
print(" [C] 相机未指向地面,请调整视角后重试")
else:
gx, gy = clamp_goal(g[0], g[1], CFG.goal_max_r)
goals[:] = [(gx, gy)]
goal_active = True
vel_filter.reset()
print(f" 目标: ({gx:.2f}, {gy:.2f}) [C=相机视线]")
if not goal_active or not goals:
stop_output()
vel_filter.reset()
hide_goal_marker()
mujoco.mj_step(model, data)
viewer.sync()
continue
# ========== state ==========
x, y, yaw = get_agent_state(data)
goal_x, goal_y = goals[0]
dist_to_goal = float(np.hypot(goal_x - x, goal_y - y))
if dist_to_goal < CFG.goal_threshold:
print(" 已到达,停止。按 G / C 设置新目标")
goal_active = False
goals.clear()
vel_filter.reset()
stop_output()
hide_goal_marker()
mujoco.mj_step(model, data)
viewer.sync()
continue
set_goal_marker(goal_x, goal_y)
# ========== scan ==========
distances, angles = scanner.scan(model, data, body_id, site_id)
# ========== stuck detect ==========
moved = float(np.hypot(x - last_x, y - last_y))
if moved < CFG.stuck_thresh and dist_to_goal > CFG.goal_threshold:
stuck_cnt += 1
else:
stuck_cnt = 0
last_x, last_y = x, y
stuck = stuck_cnt > CFG.stuck_steps
# ========== velocities ==========
vx_a, vy_a, wz_a, _min_d = obstacle_avoidance_vel(distances, angles, CFG)
vx_g, vy_g, wz_g = goal_attraction_vel(x, y, yaw, goal_x, goal_y, CFG)
vx_b, vy_b, wz_b = blend_and_clamp(vx_a, vy_a, wz_a, vx_g, vy_g, wz_g, dist_to_goal, stuck, CFG)
# ========== filter ==========
vel_filter.max_dv = CFG.max_dv_stuck if stuck else CFG.max_dv
vel_filter.max_dw = CFG.max_dw_stuck if stuck else CFG.max_dw
vx, vy, wz = vel_filter.update(vx_b, vy_b, wz_b)
# ========== body -> world for actuator ==========
c = float(np.cos(yaw))
s = float(np.sin(yaw))
vx_w = vx * c - vy * s
vy_w = vx * s + vy * c
data.ctrl[act_vel_x] = vx_w
data.ctrl[act_vel_y] = vy_w
data.ctrl[act_vel_yaw] = wz
mujoco.mj_step(model, data)
viewer.sync()
if __name__ == "__main__":
main()
main()