release: v0.1 initial version

This commit is contained in:
lovez
2026-02-21 10:25:43 +08:00
parent 5177b55d68
commit 32a6c49bbe
4 changed files with 512 additions and 0 deletions

361
scripts/run_simulation.py Normal file
View File

@@ -0,0 +1,361 @@
#!/usr/bin/env python3
"""
ROS1 + MuJoCo VLA 3D 导航 — 全向移动 + 前向扫描 + 避障 + 目标点导航
圆柱体小车: vx, vy, wz 全向移动
前向范围扫描: mj_ray 射线检测
避障: 基于距离的势场/向量场
"""
import mujoco
import mujoco.viewer
import numpy as np
import os
SCENE_PATH = os.path.join(os.path.dirname(__file__), "..", "mujoco_scenes", "cylinder_obstacles.xml")
# ============ 可配置参数 ============
NUM_RAYS = 19 # 前向扫描射线数量(-90 ~ +90 deg
RAY_ANGLE_SPAN = np.pi # 扫描角度跨度 (rad)
OBSTACLE_THRESHOLD = 0.45 # 障碍判定距离 (m)
SAFE_DISTANCE = 0.65 # 安全距离
GOAL_THRESHOLD = 0.2 # 到达目标判定距离
MAX_LINEAR = 0.6 # 最大线速度
MAX_ANGULAR = 0.8 # 最大角速度
K_ATTRACT = 1.0 # 目标吸引力
K_REPEL = 0.6 # 障碍排斥力
K_YAW_GOAL = 0.8 # 目标对准角速度增益
MIN_LINEAR = 0.18 # 最小线速度,避免卡住
STUCK_THRESH = 0.03 # 位移阈值,低于此认为卡住 (m)
STUCK_STEPS = 100 # 连续卡住步数触发绕行
GOAL_POINTS = [] # 初始无目标
GOAL_AHEAD_DIST = 2.0 # G 键:目标 = 车头前方 N 米
GOAL_MAX_R = 5.0 # 目标点边界:距离原点不超过此值 (m)
def _clamp_goal(gx, gy):
"""目标点边界:限制在距离原点 GOAL_MAX_R 以内"""
r = np.sqrt(gx * gx + gy * gy) + 1e-8
if r > GOAL_MAX_R:
scale = GOAL_MAX_R / r
return (float(gx * scale), float(gy * scale))
return (float(gx), float(gy))
def get_agent_state(data, body_id):
"""获取小车位姿: x, y, yaw"""
qpos = data.qpos
x, y = qpos[0], qpos[1]
yaw = qpos[2]
return x, y, yaw
def forward_ray_scan(model, data, body_id, site_id, num_rays, angle_span):
"""
前向范围扫描: 在车体前方扇形区域内发射射线
返回: (距离数组, 角度数组)
"""
site_xpos = data.site_xpos[site_id].copy()
xmat = np.array(data.xmat[body_id]).reshape(3, 3)
forward = xmat[:, 0] # 前向 (body +X)
angles = np.linspace(-angle_span / 2, angle_span / 2, num_rays)
distances = np.full(num_rays, 10.0)
for i, theta in enumerate(angles):
c, s = np.cos(theta), np.sin(theta)
ray_dir = c * forward + s * xmat[:, 1] # 绕 body Z 旋转
ray_dir = ray_dir / (np.linalg.norm(ray_dir) + 1e-8)
geomid = np.array([-1], dtype=np.int32)
d = mujoco.mj_ray(model, data, site_xpos, ray_dir, None, 1, body_id, geomid)
if d >= 0:
distances[i] = d
return distances, angles
def obstacle_avoidance_vel(distances, angles):
"""
避障速度 + 绕行分量。被挡时朝开阔方向加速,而非只排斥
返回: (vx_avoid, vy_avoid, wz_avoid)
"""
min_d = np.min(distances)
if min_d > OBSTACLE_THRESHOLD:
return 0.0, 0.0, 0.0
vx, vy, wz = 0.0, 0.0, 0.0
safe_sector = np.argmax(distances)
best_theta = angles[safe_sector]
for d, theta in zip(distances, angles):
if d < OBSTACLE_THRESHOLD:
ratio = 1.0 - d / OBSTACLE_THRESHOLD
strength = K_REPEL * (ratio ** 2)
vx -= strength * np.cos(theta)
vy -= strength * np.sin(theta)
elif d < SAFE_DISTANCE:
ratio = (SAFE_DISTANCE - d) / (SAFE_DISTANCE - OBSTACLE_THRESHOLD)
strength = K_REPEL * 0.15 * ratio
wz += strength * np.clip(best_theta - theta, -1, 1)
# 绕行:朝最开阔方向加正向速度,避免只退不绕
bypass = 0.35
vx += bypass * np.cos(best_theta)
vy += bypass * np.sin(best_theta)
wz += 0.4 * best_theta
return vx, vy, wz
def goal_attraction_vel(x, y, yaw, goal_x, goal_y):
"""
目标吸引力: 在车体坐标系下计算朝目标的 vx, vy, wz
优先保持线速度,角速度仅用于微调朝向
"""
dx = goal_x - x
dy = goal_y - y
dist = np.sqrt(dx * dx + dy * dy) + 1e-6
# 世界系下期望方向
gx_w = dx / dist
gy_w = dy / dist
# 转到车体系
c, s = np.cos(-yaw), np.sin(-yaw)
gx_b = c * gx_w - s * gy_w
gy_b = s * gx_w + c * gy_w
# 线速度:朝目标,随距离平滑
scale = np.tanh(dist) * 0.8 + 0.2
vx = K_ATTRACT * scale * gx_b
vy = K_ATTRACT * scale * gy_b
# 角速度:弱增益,避免只转不走
target_yaw = np.arctan2(dy, dx)
yaw_err = np.arctan2(np.sin(target_yaw - yaw), np.cos(target_yaw - yaw))
wz = K_YAW_GOAL * np.tanh(yaw_err)
return vx, vy, wz
def blend_and_clamp(vx_a, vy_a, wz_a, vx_g, vy_g, wz_g, dist_to_goal, min_d, stuck):
"""融合避障与目标速度,限幅,卡住时强制最小速度"""
vx = vx_a + vx_g
vy = vy_a + vy_g
wz = wz_a + wz_g
lin = np.sqrt(vx * vx + vy * vy)
# 未到目标且线速度过小:强制最小速度
if dist_to_goal > GOAL_THRESHOLD and lin < MIN_LINEAR:
if lin > 1e-6:
vx *= MIN_LINEAR / lin
vy *= MIN_LINEAR / lin
else:
# 融合后接近零:优先朝目标,被挡时朝避障方向
ax, ay = vx_g + vx_a, vy_g + vy_a
anorm = np.sqrt(ax * ax + ay * ay) + 1e-8
vx = MIN_LINEAR * ax / anorm
vy = MIN_LINEAR * ay / anorm
lin = np.sqrt(vx * vx + vy * vy)
if lin > MAX_LINEAR:
scale = MAX_LINEAR / lin
vx *= scale
vy *= scale
wz = np.clip(wz, -MAX_ANGULAR, MAX_ANGULAR)
return vx, vy, wz
class VelocityFilter:
"""EMA 滤波 + 速率限制,平滑控制输出"""
def __init__(self, alpha=0.75, max_dv=0.15, max_dw=0.2):
self.alpha = alpha # 滤波系数,越大越平滑
self.max_dv = max_dv # 每步最大线速度变化
self.max_dw = max_dw # 每步最大角速度变化
self.vx, self.vy, self.wz = 0.0, 0.0, 0.0
def update(self, vx_cmd, vy_cmd, wz_cmd):
# 1. EMA 滤波
vx_f = self.alpha * self.vx + (1 - self.alpha) * vx_cmd
vy_f = self.alpha * self.vy + (1 - self.alpha) * vy_cmd
wz_f = self.alpha * self.wz + (1 - self.alpha) * wz_cmd
# 2. 速率限制
dvx = np.clip(vx_f - self.vx, -self.max_dv, self.max_dv)
dvy = np.clip(vy_f - self.vy, -self.max_dv, self.max_dv)
dwz = np.clip(wz_f - self.wz, -self.max_dw, self.max_dw)
self.vx += dvx
self.vy += dvy
self.wz += dwz
return self.vx, self.vy, self.wz
def main():
model = mujoco.MjModel.from_xml_path(SCENE_PATH)
data = mujoco.MjData(model)
body_id = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_BODY, "cylinder_agent")
site_id = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_SITE, "ray_origin")
# 执行器索引
act_ids = [
mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_ACTUATOR, "vel_x"),
mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_ACTUATOR, "vel_y"),
mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_ACTUATOR, "vel_yaw"),
]
goals = GOAL_POINTS.copy()
goal_idx = 0 if goals else -1
vel_filter = VelocityFilter(alpha=0.70, max_dv=0.18, max_dw=0.2)
last_x, last_y = 0.0, 0.0
stuck_cnt = 0
goal_joint_id = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_JOINT, "goal_joint")
goal_qposadr = model.jnt_qposadr[goal_joint_id]
data.qpos[goal_qposadr : goal_qposadr + 3] = [-99, -99, 0.1] # 初始隐藏
print("=" * 55)
print("VLA 3D 导航 - 全向移动 + 前向扫描 + 避障")
print("=" * 55)
print("G: 车头前方 {:.0f}m | C: 相机视线 | 目标边界 R<{:.0f}m".format(GOAL_AHEAD_DIST, GOAL_MAX_R))
print("ESC 退出")
print("=" * 55)
add_goal_ahead = [False]
add_goal_camera = [False]
def key_cb(keycode):
if keycode == 71: # G
add_goal_ahead[0] = True
elif keycode == 67: # C: 相机视线与地面交点
add_goal_camera[0] = True
def _goal_from_camera(viewer_handle):
"""相机视线与 z=0 地面交点(旋转相机后按 C"""
cam = viewer_handle.cam
lookat = np.array(cam.lookat)
dist = float(cam.distance)
az = np.deg2rad(float(cam.azimuth))
el = np.deg2rad(float(cam.elevation))
# 相机位置 = lookat - dist * 前向单位向量
fx = np.cos(el) * np.sin(az)
fy = -np.cos(el) * np.cos(az)
fz = np.sin(el)
cam_pos = lookat - dist * np.array([fx, fy, fz])
# 射线与 z=0 交点: cam_pos + t*[fx,fy,fz], 令 z=0
if abs(fz) < 1e-6:
return None
t = -cam_pos[2] / fz
if t < 0:
return None
pt = cam_pos + t * np.array([fx, fy, fz])
return (float(pt[0]), float(pt[1]))
def control_callback():
nonlocal goal_idx, last_x, last_y, stuck_cnt
if add_goal_ahead[0]:
add_goal_ahead[0] = False
x, y, yaw = get_agent_state(data, body_id)
gx = x + GOAL_AHEAD_DIST * np.cos(yaw)
gy = y + GOAL_AHEAD_DIST * np.sin(yaw)
gx, gy = _clamp_goal(gx, gy)
goals.clear()
goals.append((gx, gy))
goal_idx = 0
vel_filter.vx = vel_filter.vy = vel_filter.wz = 0.0
print(" 目标: ({:.2f}, {:.2f}) [G=车头前方]".format(gx, gy))
elif add_goal_camera[0]:
add_goal_camera[0] = False
g = _goal_from_camera(viewer)
if g is not None:
g = _clamp_goal(g[0], g[1])
goals.clear()
goals.append(g)
goal_idx = 0
vel_filter.vx = vel_filter.vy = vel_filter.wz = 0.0
print(" 目标: ({:.2f}, {:.2f}) [C=相机视线]".format(g[0], g[1]))
else:
print(" [C] 相机未指向地面,请调整视角后重试")
if goal_idx < 0 or not goals:
data.ctrl[act_ids[0]] = 0
data.ctrl[act_ids[1]] = 0
data.ctrl[act_ids[2]] = 0
vel_filter.vx = vel_filter.vy = vel_filter.wz = 0.0
data.qpos[goal_qposadr : goal_qposadr + 3] = [-99, -99, 0.1] # 藏起标记
return
x, y, yaw = get_agent_state(data, body_id)
goal_x, goal_y = goals[goal_idx]
dist_to_goal = np.sqrt((goal_x - x) ** 2 + (goal_y - y) ** 2)
if dist_to_goal < GOAL_THRESHOLD:
goals.clear()
goal_idx = -1
vel_filter.vx = vel_filter.vy = vel_filter.wz = 0.0
print(" 已到达,停止。按 G 设置新目标")
data.ctrl[act_ids[0]] = 0
data.ctrl[act_ids[1]] = 0
data.ctrl[act_ids[2]] = 0
data.qpos[goal_qposadr : goal_qposadr + 3] = [-99, -99, 0.1]
return
# 更新目标点标记位置
data.qpos[goal_qposadr] = goal_x
data.qpos[goal_qposadr + 1] = goal_y
data.qpos[goal_qposadr + 2] = 0.15
# 1. 前向范围扫描
distances, angles = forward_ray_scan(
model, data, body_id, site_id, NUM_RAYS, RAY_ANGLE_SPAN
)
min_d = np.min(distances)
# 2. 卡住检测
moved = np.sqrt((x - last_x) ** 2 + (y - last_y) ** 2)
if moved < STUCK_THRESH and dist_to_goal > GOAL_THRESHOLD:
stuck_cnt += 1
else:
stuck_cnt = 0
last_x, last_y = x, y
stuck = stuck_cnt > STUCK_STEPS
# 3. 避障速度(含绕行分量)
vx_a, vy_a, wz_a = obstacle_avoidance_vel(distances, angles)
# 4. 目标吸引速度
vx_g, vy_g, wz_g = goal_attraction_vel(x, y, yaw, goal_x, goal_y)
# 5. 融合、最小速度、限幅
vx, vy, wz = blend_and_clamp(
vx_a, vy_a, wz_a, vx_g, vy_g, wz_g, dist_to_goal, min_d, stuck
)
# 6. 滤波 + 速率限制(卡住时放宽)
max_dv = 0.25 if stuck else 0.18
max_dw = 0.28 if stuck else 0.2
vel_filter.max_dv = max_dv
vel_filter.max_dw = max_dw
vx, vy, wz = vel_filter.update(vx, vy, wz)
# 车体系 -> 世界系slide_x/y 沿世界轴)
c, s = np.cos(yaw), np.sin(yaw)
vx_w = vx * c - vy * s
vy_w = vx * s + vy * c
data.ctrl[act_ids[0]] = vx_w
data.ctrl[act_ids[1]] = vy_w
data.ctrl[act_ids[2]] = wz
with mujoco.viewer.launch_passive(model, data, key_callback=key_cb) as viewer:
while viewer.is_running():
mujoco.mj_forward(model, data)
control_callback()
mujoco.mj_step(model, data)
viewer.sync()
if __name__ == "__main__":
main()