2 Commits
v0.2 ... v0.3

Author SHA1 Message Date
lovez
d4992f9b41 release: v0.3 2026-02-21 10:47:13 +08:00
lovez
175ea87fed release: v0.1 initial version 2026-02-21 10:33:09 +08:00
3 changed files with 1194 additions and 285 deletions

554
MJDATA.TXT Normal file
View File

@@ -0,0 +1,554 @@
SIZES
narena 13631488
nbuffer 13952
nplugin 0
maxuse_stack 2388
maxuse_arena 29552
maxuse_con 1
maxuse_efc 4
solver_nisland 1
ne 0
nf 0
nl 0
nefc 0
nnzJ 0
ncon 0
nisland 0
threadpool 0
TIMER
0: duration = 0.0029 number = 1
1: duration = 0.0055 number = 2
2: duration = 0 number = 0
3: duration = 0.0039 number = 2
4: duration = 0.0009 number = 2
5: duration = 0.00017 number = 2
6: duration = 6e-05 number = 2
7: duration = 8e-05 number = 1
8: duration = 0.001 number = 2
9: duration = 0.00032 number = 2
10: duration = 0.0018 number = 2
11: duration = 0.00029 number = 2
12: duration = 6e-05 number = 2
13: duration = 0.0014 number = 2
14: duration = 0.00031 number = 2
ENERGY = 0 0
TIME = 3.7e+04
QPOS
0.6
0.51
-27
-99
-99
-7.3e+02
1
0
0
0
QVEL
-1.1e-322
-1.1e-322
-2e-323
0
0
-3.7e+05
0
0
0
QACC_WARMSTART
1.2e-321
1.2e-321
8.8e-322
0
0
-9.8
0
0
0
CTRL
0
0
0
QFRC_APPLIED
0
0
0
0
0
0
0
0
0
XFRC_APPLIED
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
QACC
1.2e-321
1.2e-321
8.8e-322
0
0
-9.8
0
0
0
XPOS
0 0 0
0.6 0.51 0.35
-99 -99 0.1
1.5 0 0.25
-1.2 1 0.2
0.8 -1 0.15
-0.5 -0.8 0.2
1 0.8 0.25
XQUAT
1 0 0 0
0.74 0 0 -0.67
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
XMAT
1 0 0 0 1 0 0 0 1
0.096 1 0 -1 0.096 -0 -0 0 1
1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1
XIPOS
0 0 0
0.61 0.48 0.36
-99 -99 0.1
1.5 0 0.25
-1.2 1 0.2
0.8 -1 0.15
-0.5 -0.8 0.2
1 0.8 0.25
XIMAT
1 0 0 0 1 0 0 0 1
0.024 -1 0.049 -0.021 -0.05 -1 1 0.023 -0.022
1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1
XANCHOR
0 0 0.35
0.6 0 0.35
0.6 0.51 0.35
-99 -99 0.1
XAXIS
1 0 0
0 1 0
0 0 1
0 0 1
GEOM_XPOS
0 0 0
0.6 0.51 0.35
0.62 0.32 0.35
0.73 0.52 0.35
0.6 0.51 0.45
-99 -99 0.1
1.5 0 0.25
-1.2 1 0.2
0.8 -1 0.15
-0.5 -0.8 0.2
1 0.8 0.25
GEOM_XMAT
1 0 0 0 1 0 0 0 1
0.096 1 0 -1 0.096 -0 -0 0 1
-2.8e-17 1 -0.096 -5.6e-17 0.096 1 1 5.6e-17 5.6e-17
0.096 5.6e-17 -1 -1 -5.6e-17 -0.096 -5.6e-17 1 5.6e-17
0.096 -1 -1.2e-16 -1 -0.096 -1.2e-17 0 1.2e-16 -1
1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1
SITE_XPOS
0.63 0.26 0.35
SITE_XMAT
0.096 1 0 -1 0.096 -0 -0 0 1
CAM_XPOS
0 0 5
CAM_XMAT
1 0 0 0 1 0 0 0 1
SUBTREE_COM
-1.4 -2.1 0.23
0.61 0.48 0.36
-99 -99 0.1
1.5 0 0.25
-1.2 1 0.2
0.8 -1 0.15
-0.5 -0.8 0.2
1 0.8 0.25
CDOF
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0.037 0.012 -0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
CINERT
0 0 0 0 0 0 0 0 0 0
0.15 0.1 0.17 0.0025 0.00047 -0.0014 0 0 0 7.3
0.042 0.042 0.042 0 0 0 0 0 0 7.2
9.2 9.2 11 0 0 0 0 0 0 1.8e+02
0.54 0.54 0.32 0 0 0 0 0 0 28
0.13 0.13 0.13 0 0 0 0 0 -3.9e-16 14
3.4 3.4 4.2 0 0 0 0 0 0 1e+02
0.55 0.55 0.16 0 0 0 0 0 0 23
ACTUATOR_LENGTH
0.6
0.51
-27
ACTUATOR_MOMENT
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
CRB
0 0 0 0 0 0 0 0 0 0
0.15 0.1 0.17 0.0025 0.00047 -0.0014 0 0 0 7.3
0.042 0.042 0.042 0 0 0 0 0 0 7.2
9.2 9.2 11 0 0 0 0 0 0 1.8e+02
0.54 0.54 0.32 0 0 0 0 0 0 28
0.13 0.13 0.13 0 0 0 0 0 -3.9e-16 14
3.4 3.4 4.2 0 0 0 0 0 0 1e+02
0.55 0.55 0.16 0 0 0 0 0 0 23
QM
7.3 0 0.27 0 0 0 0 0 0
0 7.3 0.088 0 0 0 0 0 0
0.27 0.088 0.18 0 0 0 0 0 0
0 0 0 7.2 0 0 0 0 0
0 0 0 0 7.2 0 0 0 0
0 0 0 0 0 7.2 0 0 0
0 0 0 0 0 0 0.042 0 0
0 0 0 0 0 0 0 0.042 0
0 0 0 0 0 0 0 0 0.042
QLD
6.9 -0.018 1.5 0 0 0 0 0 0
-0.018 7.3 0.48 0 0 0 0 0 0
1.5 0.48 0.18 0 0 0 0 0 0
0 0 0 7.2 0 0 0 0 0
0 0 0 0 7.2 0 0 0 0
0 0 0 0 0 7.2 0 0 0
0 0 0 0 0 0 0.042 0 0
0 0 0 0 0 0 0 0.042 0
0 0 0 0 0 0 0 0 0.042
QLDIAGINV
0.14
0.14
5.5
0.14
0.14
0.14
24
24
24
QLDIAGSQRTINV
0.38
0.37
2.3
0.37
0.37
0.37
4.9
4.9
4.9
B_rownnz 9 3 6 0 0 0 0 0
B_rowadr 0 9 12 18 18 18 18 18
B_colind 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
C_rownnz 3 3 3 1 1 1 1 1 1
C_rowadr 0 3 6 9 10 11 12 13 14
C_colind 0 1 2 0 1 2 0 1 2 3 4 5 6 7 8
mapM2C 0 2 5 2 1 4 5 4 3 6 7 9 12 16 21
D_rownnz 3 3 3 6 6 6 6 6 6
D_rowadr 0 3 6 9 15 21 27 33 39
D_colind 0 1 2 0 1 2 0 1 2 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8
mapM2D 0 2 5 2 1 4 5 4 3 6 8 11 15 20 26 8 7 10 14 19 25 11 10 9 13 18 24 15 14 13 12 17 23 20 19 18 17 16 22 26 25 24 23 22 21
mapD2M 0 4 3 8 7 6 9 16 15 23 22 21 30 29 28 27 37 36 35 34 33 44 43 42 41 40 39
QDERIV
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
QLU
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
CONTACT
ACTUATOR_VELOCITY
-1.1e-322
-1.1e-322
-2e-323
CVEL
0 0 0 0 0 0
0 0 -2e-323 -1.1e-322 -1.1e-322 0
0 0 0 0 0 -3.7e+05
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
CDOF_DOT
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 -1.1e-322 1.1e-322 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 -3.7e+05 0
0 0 0 3.7e+05 0 0
0 0 0 0 0 0
QFRC_BIAS
0
0
0
0
0
71
0
0
0
QFRC_SPRING
0
0
0
0
0
0
0
0
0
QFRC_DAMPER
0
0
0
0
0
0
0
0
0
QFRC_GRAVCOMP
0
0
0
0
0
0
0
0
0
QFRC_FLUID
0
0
0
0
0
0
0
0
0
QFRC_PASSIVE
0
0
0
0
0
0
0
0
0
SUBTREE_LINVEL
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
SUBTREE_ANGMOM
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
ACTUATOR_FORCE
9.1e-321
9.1e-321
5.9e-322
QFRC_ACTUATOR
9.1e-321
9.1e-321
5.9e-322
0
0
0
0
0
0
QFRC_SMOOTH
9.1e-321
9.1e-321
5.9e-322
0
0
-71
0
0
0
QACC_SMOOTH
1.2e-321
1.2e-321
8.8e-322
0
0
-9.8
0
0
0
QFRC_CONSTRAINT
0
0
0
0
0
0
0
0
0
QFRC_INVERSE
0
0
0
0
0
0
0
0
0
CACC
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
CFRC_INT
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
CFRC_EXT
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

122
docs/DDA_KNOWLEDGE.md Normal file
View File

@@ -0,0 +1,122 @@
# DDA 知识点Directional Distance Avoidance
## 一、从「离散射线」到「深度图」的转变
| 原方案 | 新方案 |
|--------|--------|
| mj_ray 离散射线 | 深度图 / 点云(带距离的视场) |
| N 条射线直接给距离 | 从深度图按方位做 1D 距离扇区 |
| 每条射线独立 | 每个扇区取**最近障碍距离**(鲁棒统计) |
**核心**:深感相机给你的是 **Depth / PointCloud**,不需要 mj_ray 这种离散射线;先把深度转成扇区最近距离,再做避障。
---
## 二、DDA 核心思想
1. **输入**`dist[sector]` —— 每个方向上的最近障碍距离(米)
2. **判断**:当前期望运动方向 `move_theta = atan2(vy_cmd, vx_cmd)` 是否过近
3. **动作**
- 若过近:**禁止/衰减**朝该方向的速度分量
- 同时生成**侧向/偏航**的「脱离」控制,朝开阔方向
---
## 三、深度 → 扇区最近距离depth_to_sectors
- 视场水平角 `HFOV`(如 RealSense D435 ≈ 86°
- 扇区数 `N`(如 31、61
- 对每个扇区:在深度图对应列范围取**鲁棒最小值**
- `percentile(depth, 5%)`
- 剔除 0/无效 + 中值滤波
得到:
- `angles[i]`:扇区角(车体坐标系,左正右负)
- `d[i]`:该方向最近障碍距离(米)
---
## 四、DDA 避障控制律
1. 计算期望运动方向角:`move_theta = atan2(vy_cmd, vx_cmd)`
2.`move_theta` 附近取窗口内最小距离 `dmin_dir`
3. 阈值判断:
- `dmin_dir >= safe_dist`:正常走
- `dmin_dir < stop_dist`:禁止向前 + 强制侧移/转向
- 中间区间:按比例衰减 + 轻微偏航
4. 选择「最开阔方向」`best_theta`,作为绕行/偏航目标
---
## 五、ROS1 + 深感相机 落地要点
### 5.1 深度图输入
- **Depth Image**`sensor_msgs/Image`,订阅 `/camera/depth/image_rect`
- **PointCloud**`sensor_msgs/PointCloud2`,转为深度图或直接投影到扇区
### 5.2 常用深感相机参数
| 相机 | HFOV | 分辨率 |
|------|------|--------|
| RealSense D435 | ~87° | 640×480 |
| Orbbec Astra | ~60° | 640×480 |
| ZED | 可调 | 多种 |
| OAK-D | ~73° | 640×400 |
### 5.3 推荐两行增强(仿真中已启用)
1. **速度自适应安全距离**:跑得越快看得越远
```py
safe_dist = base_safe + k * speed
stop_dist = base_stop + 0.5 * k * speed
```
2. **前方扇区限速**:只用前方 ±20° 的最小距离限速
```py
front = (np.abs(angles) < np.deg2rad(20))
d_front = np.min(dists[front])
speed_limit = np.clip((d_front - stop_dist) / (safe_dist - stop_dist), 0, 1) * MAX_LINEAR
```
---
## 六、ROS1 深度输入对接(待实现)
### 6.1 Depth Image 订阅
```python
# 伪代码ROS1 订阅
import rospy
from sensor_msgs.msg import Image
from cv_bridge import CvBridge
def depth_cb(msg):
depth = bridge.imgmsg_to_cv2(msg, desired_encoding='passthrough')
depth = depth.astype(np.float32) / 1000.0 # mm -> m
dists, angles = depth_to_sectors(depth, hfov_rad, num_sectors, ...)
# 存入共享变量,供控制回调使用
rospy.Subscriber('/camera/depth/image_rect', Image, depth_cb)
```
### 6.2 PointCloud 订阅
从 `sensor_msgs/PointCloud2` 投影到极坐标扇区,取每扇区最近距离。
---
## 七、控制流程对接
**仿真**`mj_ray` 网格 → 仿真深度图 `(1, num_sectors)` → `depth_to_sectors()`
**实机**:深感相机 depth/pointcloud → `depth_to_sectors()`
```
depth (H×W) 或 pointcloud
→ depth_to_sectors() → dists, angles
→ dda_avoidance_from_depth(dists, angles, vx_g, vy_g)
→ vx_a, vy_a, wz_a
→ blend_and_clamp(vx_a, vy_a, wz_a, vx_g, vy_g, wz_g)
```
融合后继续做:滤波 → 车体系→世界系 → 执行器。

View File

@@ -1,197 +1,440 @@
#!/usr/bin/env python3
"""
ROS1 + MuJoCo VLA 3D 导航 — 全向移动 + 前向扫描 + 避障 + 目标点导航
MuJoCo 全向小车导航(仿真深度图 + DDA 避障 + 目标点导航
圆柱体小车: vx, vy, wz 全向移动
前向范围扫描: mj_ray 射线检测
避障: 基于距离的势场/向量场
- 输入仿真深度图mj_ray 网格)或可替换为真实深感相机的 depth/pointcloud
- depth_to_sectors深度 → 1D 扇区最近距离(鲁棒统计)
- dda_avoidance_from_depthDirectional Distance Avoidance 避障
- vx, vy, wz 全向移动(车体系 → 世界系执行器)
- 便于 ROS1 + RealSense/Orbbec/ZED 等真实相机落地
"""
from __future__ import annotations
import os
from dataclasses import dataclass
from typing import Optional, Tuple, List
import mujoco
import mujoco.viewer
import numpy as np
import os
SCENE_PATH = os.path.join(os.path.dirname(__file__), "..", "mujoco_scenes", "cylinder_obstacles.xml")
# ============ 可配置参数 ============
NUM_RAYS = 19 # 前向扫描射线数量(-90 ~ +90 deg
RAY_ANGLE_SPAN = np.pi # 扫描角度跨度 (rad)
OBSTACLE_THRESHOLD = 0.45 # 障碍判定距离 (m)
SAFE_DISTANCE = 0.65 # 安全距离
GOAL_THRESHOLD = 0.2 # 到达目标判定距离
MAX_LINEAR = 0.6 # 最大线速度
MAX_ANGULAR = 0.8 # 最大角速度
K_ATTRACT = 1.0 # 目标吸引力
K_REPEL = 0.6 # 障碍排斥力
K_YAW_GOAL = 0.8 # 目标对准角速度增益
MIN_LINEAR = 0.18 # 最小线速度,避免卡住
STUCK_THRESH = 0.03 # 位移阈值,低于此认为卡住 (m)
STUCK_STEPS = 100 # 连续卡住步数触发绕行
GOAL_POINTS = [] # 初始无目标
GOAL_AHEAD_DIST = 2.0 # G 键:目标 = 车头前方 N 米
GOAL_MAX_R = 5.0 # 目标点边界:距离原点不超过此值 (m)
# ===================== 参数配置 =====================
@dataclass
class NavCfg:
# depth sector仿真/真实深度图统一接口)
hfov_deg: float = 86.0 # 水平视场角(如 RealSense D435
num_sectors: int = 61 # 扇区数
depth_z_min: float = 0.1
depth_z_max: float = 6.0
depth_percentile: float = 5.0 # 鲁棒最小值5% 分位
# DDA 避障
obstacle_threshold: float = 0.45 # stop_dist
safe_distance: float = 0.65 # safe_dist
dda_window: int = 2 # move_theta 附近 ±N 扇区
speed_adaptive_k: float = 0.15 # 速度自适应safe += k*speed
goal_threshold: float = 0.20
# limits
max_linear: float = 0.60
max_angular: float = 0.80
min_linear: float = 0.18 # 防止“只转不走”或输出趋零卡死
# gains
k_attract: float = 1.0
k_repel: float = 0.6
k_yaw_goal: float = 0.8
# 转向策略:大角度先转后走,小角度边走边调
yaw_turn_first_deg: float = 35.0 # 超过此角度:先转向,几乎不走
# stuck detect
stuck_thresh: float = 0.03
stuck_steps: int = 100
# goal set
goal_ahead_dist: float = 2.0
goal_max_r: float = 5.0
# output smoothing
ema_alpha: float = 0.70
max_dv: float = 0.18
max_dw: float = 0.20
max_dv_stuck: float = 0.25
max_dw_stuck: float = 0.28
def _clamp_goal(gx, gy):
"""目标点边界:限制在距离原点 GOAL_MAX_R 以内"""
r = np.sqrt(gx * gx + gy * gy) + 1e-8
if r > GOAL_MAX_R:
scale = GOAL_MAX_R / r
return (float(gx * scale), float(gy * scale))
return (float(gx), float(gy))
CFG = NavCfg()
def get_agent_state(data, body_id):
"""获取小车位姿: x, y, yaw"""
# ===================== 工具函数 =====================
def clamp_goal(gx: float, gy: float, max_r: float) -> Tuple[float, float]:
r = float(np.hypot(gx, gy)) + 1e-9
if r > max_r:
s = max_r / r
return float(gx * s), float(gy * s)
return float(gx), float(gy)
def wrap_pi(a: float) -> float:
# 更稳定的 [-pi, pi]
return float(np.arctan2(np.sin(a), np.cos(a)))
def get_agent_state(data: mujoco.MjData) -> Tuple[float, float, float]:
# 假设 qpos: x, y, yaw 在 0,1,2
qpos = data.qpos
x, y = qpos[0], qpos[1]
yaw = qpos[2]
return x, y, yaw
return float(qpos[0]), float(qpos[1]), float(qpos[2])
def forward_ray_scan(model, data, body_id, site_id, num_rays, angle_span):
def goal_from_camera(viewer_handle) -> Optional[Tuple[float, float]]:
"""相机视线与 z=0 平面交点(旋转相机后按 C"""
cam = viewer_handle.cam
lookat = np.array(cam.lookat, dtype=float)
dist = float(cam.distance)
az = np.deg2rad(float(cam.azimuth))
el = np.deg2rad(float(cam.elevation))
# MuJoCo viewer 的相机方向约定:这里延续你原实现
fx = np.cos(el) * np.sin(az)
fy = -np.cos(el) * np.cos(az)
fz = np.sin(el)
cam_pos = lookat - dist * np.array([fx, fy, fz], dtype=float)
if abs(fz) < 1e-8:
return None
t = -cam_pos[2] / fz
if t < 0:
return None
pt = cam_pos + t * np.array([fx, fy, fz], dtype=float)
return float(pt[0]), float(pt[1])
# ===================== 仿真深度图 + 扇区 + DDA =====================
def depth_to_sectors(
depth: np.ndarray,
hfov_rad: float,
num_sectors: int,
z_min: float = 0.1,
z_max: float = 6.0,
percentile: float = 5.0,
) -> Tuple[np.ndarray, np.ndarray]:
"""
前向范围扫描: 在车体前方扇形区域内发射射线
返回: (距离数组, 角度数组)
深度图 → 1D 扇区最近距离(可直接用于真实深感相机)
depth: H×W (m)0/NaN 表示无效
"""
site_xpos = data.site_xpos[site_id].copy()
xmat = np.array(data.xmat[body_id]).reshape(3, 3)
forward = xmat[:, 0] # 前向 (body +X)
H, W = depth.shape
angles = np.linspace(-hfov_rad / 2, hfov_rad / 2, num_sectors, dtype=np.float64)
cols = np.linspace(0, W, num_sectors + 1).astype(int)
dists = np.full(num_sectors, z_max, dtype=np.float64)
angles = np.linspace(-angle_span / 2, angle_span / 2, num_rays)
distances = np.full(num_rays, 10.0)
for i in range(num_sectors):
c0, c1 = cols[i], cols[i + 1]
strip = depth[:, c0:c1].reshape(-1)
strip = strip[np.isfinite(strip)]
strip = strip[(strip > z_min) & (strip < z_max)]
if strip.size == 0:
continue
dists[i] = float(np.percentile(strip, percentile))
for i, theta in enumerate(angles):
c, s = np.cos(theta), np.sin(theta)
ray_dir = c * forward + s * xmat[:, 1] # 绕 body Z 旋转
ray_dir = ray_dir / (np.linalg.norm(ray_dir) + 1e-8)
dists = np.minimum(dists, np.roll(dists, 1))
dists = np.minimum(dists, np.roll(dists, -1))
return dists, angles
geomid = np.array([-1], dtype=np.int32)
d = mujoco.mj_ray(model, data, site_xpos, ray_dir, None, 1, body_id, geomid)
class DepthSimulator:
"""用 mj_ray 生成仿真深度图(模拟深感相机输出)"""
def __init__(self, num_sectors: int, hfov_rad: float):
self.num_sectors = int(num_sectors)
self.angles = np.linspace(-hfov_rad / 2, hfov_rad / 2, self.num_sectors)
c = np.cos(self.angles)
s = np.sin(self.angles)
self.ray_dirs_body = np.stack([c, s, np.zeros_like(c)], axis=1).astype(np.float64)
self.depth = np.full((1, self.num_sectors), 10.0, dtype=np.float64)
self._geomid = np.array([-1], dtype=np.int32)
def render(
self,
model: mujoco.MjModel,
data: mujoco.MjData,
body_id: int,
site_id: int,
) -> np.ndarray:
site_xpos = data.site_xpos[site_id]
xmat = np.array(data.xmat[body_id], dtype=np.float64).reshape(3, 3)
ray_dirs_world = (xmat @ self.ray_dirs_body.T).T
norms = np.linalg.norm(ray_dirs_world, axis=1) + 1e-9
ray_dirs_world /= norms[:, None]
self.depth.fill(10.0)
for i in range(self.num_sectors):
d = mujoco.mj_ray(
model, data,
site_xpos, ray_dirs_world[i],
None, 1, body_id, self._geomid
)
if d >= 0:
distances[i] = d
return distances, angles
self.depth[0, i] = float(d)
return self.depth
def obstacle_avoidance_vel(distances, angles):
def dda_avoidance_from_depth(
dists: np.ndarray,
angles: np.ndarray,
vx_cmd: float,
vy_cmd: float,
cfg: NavCfg,
) -> Tuple[float, float, float]:
"""
避障速度 + 绕行分量。被挡时朝开阔方向加速,而非只排斥
返回: (vx_avoid, vy_avoid, wz_avoid)
Directional Distance Avoidance (DDA)
只关心「你要去的方向」是否过近;过近则削掉该方向分量 + 朝开阔方向侧移/转向
"""
min_d = np.min(distances)
if min_d > OBSTACLE_THRESHOLD:
speed = float(np.hypot(vx_cmd, vy_cmd))
if speed < 1e-6:
return 0.0, 0.0, 0.0
vx, vy, wz = 0.0, 0.0, 0.0
safe_sector = np.argmax(distances)
best_theta = angles[safe_sector]
move_theta = float(np.arctan2(vy_cmd, vx_cmd))
N = len(dists)
i0 = int(np.argmin(np.abs(angles - move_theta)))
win = cfg.dda_window
idxs = [(i0 + k) % N for k in range(-win, win + 1)]
dmin_dir = float(np.min(dists[idxs]))
for d, theta in zip(distances, angles):
if d < OBSTACLE_THRESHOLD:
ratio = 1.0 - d / OBSTACLE_THRESHOLD
strength = K_REPEL * (ratio ** 2)
vx -= strength * np.cos(theta)
vy -= strength * np.sin(theta)
elif d < SAFE_DISTANCE:
ratio = (SAFE_DISTANCE - d) / (SAFE_DISTANCE - OBSTACLE_THRESHOLD)
strength = K_REPEL * 0.15 * ratio
wz += strength * np.clip(best_theta - theta, -1, 1)
best_i = int(np.argmax(dists))
best_theta = float(angles[best_i])
# 绕行:朝最开阔方向加正向速度,避免只退不绕
bypass = 0.35
vx += bypass * np.cos(best_theta)
vy += bypass * np.sin(best_theta)
wz += 0.4 * best_theta
stop_dist = cfg.obstacle_threshold
safe_dist = cfg.safe_distance
if hasattr(cfg, "speed_adaptive_k") and cfg.speed_adaptive_k > 0:
safe_dist = safe_dist + cfg.speed_adaptive_k * speed
stop_dist = stop_dist + 0.5 * cfg.speed_adaptive_k * speed
return vx, vy, wz
if dmin_dir >= safe_dist:
return 0.0, 0.0, 0.0
danger = (safe_dist - dmin_dir) / max(safe_dist - stop_dist, 1e-6)
danger = float(np.clip(danger, 0.0, 1.0))
vx_a = 0.0
vy_a = 0.0
wz_a = 0.0
mx = float(np.cos(move_theta))
my = float(np.sin(move_theta))
proj = vx_cmd * mx + vy_cmd * my
cut = (0.6 + 0.4 * danger) * proj
vx_a -= cut * mx
vy_a -= cut * my
bypass = 0.25 + 0.25 * danger
vx_a += bypass * np.cos(best_theta)
vy_a += bypass * np.sin(best_theta)
wz_a += (0.35 + 0.45 * danger) * best_theta
if dmin_dir < stop_dist:
vx_a -= vx_cmd * 0.9
vy_a -= vy_cmd * 0.9
wz_a += 0.6 * np.sign(best_theta if abs(best_theta) > 1e-3 else 1.0)
return vx_a, vy_a, wz_a
def goal_attraction_vel(x, y, yaw, goal_x, goal_y):
# ===================== 射线扫描旧接口DDA 下可弃用) =====================
class RayScanner:
"""
目标吸引力: 在车体坐标系下计算朝目标的 vx, vy, wz
优先保持线速度,角速度仅用于微调朝向
预计算扇形扫描的 body-frame 方向(基于 forward=[1,0,0], left=[0,1,0]
每帧用 body rotation (xmat) 转到 world减少每帧 cos/sin + 临时数组。
"""
dx = goal_x - x
dy = goal_y - y
dist = np.sqrt(dx * dx + dy * dy) + 1e-6
# 世界系下期望方向
gx_w = dx / dist
gy_w = dy / dist
def __init__(self, num_rays: int, angle_span: float):
self.num_rays = int(num_rays)
self.angle_span = float(angle_span)
# 转到车体系
c, s = np.cos(-yaw), np.sin(-yaw)
gx_b = c * gx_w - s * gy_w
gy_b = s * gx_w + c * gy_w
self.angles = np.linspace(-self.angle_span / 2, self.angle_span / 2, self.num_rays)
c = np.cos(self.angles)
s = np.sin(self.angles)
# 线速度:朝目标,随距离平滑
scale = np.tanh(dist) * 0.8 + 0.2
vx = K_ATTRACT * scale * gx_b
vy = K_ATTRACT * scale * gy_b
# body-frame ray directions: dir_b = c*[1,0,0] + s*[0,1,0]
# shape (N,3)
self.ray_dirs_body = np.stack([c, s, np.zeros_like(c)], axis=1).astype(np.float64)
# 角速度:弱增益,避免只转不走
target_yaw = np.arctan2(dy, dx)
yaw_err = np.arctan2(np.sin(target_yaw - yaw), np.cos(target_yaw - yaw))
wz = K_YAW_GOAL * np.tanh(yaw_err)
# buffers to avoid per-step alloc
self.distances = np.full(self.num_rays, 10.0, dtype=np.float64)
self._geomid = np.array([-1], dtype=np.int32)
return vx, vy, wz
def blend_and_clamp(vx_a, vy_a, wz_a, vx_g, vy_g, wz_g, dist_to_goal, min_d, stuck):
"""融合避障与目标速度,限幅,卡住时强制最小速度"""
vx = vx_a + vx_g
vy = vy_a + vy_g
wz = wz_a + wz_g
lin = np.sqrt(vx * vx + vy * vy)
# 未到目标且线速度过小:强制最小速度
if dist_to_goal > GOAL_THRESHOLD and lin < MIN_LINEAR:
if lin > 1e-6:
vx *= MIN_LINEAR / lin
vy *= MIN_LINEAR / lin
else:
# 融合后接近零:优先朝目标,被挡时朝避障方向
ax, ay = vx_g + vx_a, vy_g + vy_a
anorm = np.sqrt(ax * ax + ay * ay) + 1e-8
vx = MIN_LINEAR * ax / anorm
vy = MIN_LINEAR * ay / anorm
lin = np.sqrt(vx * vx + vy * vy)
if lin > MAX_LINEAR:
scale = MAX_LINEAR / lin
vx *= scale
vy *= scale
wz = np.clip(wz, -MAX_ANGULAR, MAX_ANGULAR)
return vx, vy, wz
def scan(
self,
model: mujoco.MjModel,
data: mujoco.MjData,
body_id: int,
site_id: int,
) -> Tuple[np.ndarray, np.ndarray]:
site_xpos = data.site_xpos[site_id] # view, no copy
xmat = np.array(data.xmat[body_id], dtype=np.float64).reshape(3, 3)
# world dirs: dir_w = xmat @ dir_b
# shape (N,3)
ray_dirs_world = (xmat @ self.ray_dirs_body.T).T
# normalize (理论上已单位,但数值上更稳一点)
norms = np.linalg.norm(ray_dirs_world, axis=1) + 1e-9
ray_dirs_world /= norms[:, None]
self.distances.fill(10.0)
for i in range(self.num_rays):
d = mujoco.mj_ray(
model, data,
site_xpos, ray_dirs_world[i],
None, 1, body_id, self._geomid
)
if d >= 0:
self.distances[i] = float(d)
return self.distances, self.angles
# ===================== 速度融合与滤波 =====================
class VelocityFilter:
"""EMA 滤波 + 速率限制,平滑控制输出"""
"""EMA + 速率限制,输出更平滑,避免 ctrl 抖动。"""
def __init__(self, alpha=0.75, max_dv=0.15, max_dw=0.2):
self.alpha = alpha # 滤波系数,越大越平滑
self.max_dv = max_dv # 每步最大线速度变化
self.max_dw = max_dw # 每步最大角速度变化
self.vx, self.vy, self.wz = 0.0, 0.0, 0.0
def __init__(self, alpha: float, max_dv: float, max_dw: float):
self.alpha = float(alpha)
self.max_dv = float(max_dv)
self.max_dw = float(max_dw)
self.vx = 0.0
self.vy = 0.0
self.wz = 0.0
def update(self, vx_cmd, vy_cmd, wz_cmd):
# 1. EMA 滤波
vx_f = self.alpha * self.vx + (1 - self.alpha) * vx_cmd
vy_f = self.alpha * self.vy + (1 - self.alpha) * vy_cmd
wz_f = self.alpha * self.wz + (1 - self.alpha) * wz_cmd
def reset(self):
self.vx = self.vy = self.wz = 0.0
# 2. 速率限制
dvx = np.clip(vx_f - self.vx, -self.max_dv, self.max_dv)
dvy = np.clip(vy_f - self.vy, -self.max_dv, self.max_dv)
dwz = np.clip(wz_f - self.wz, -self.max_dw, self.max_dw)
def update(self, vx_cmd: float, vy_cmd: float, wz_cmd: float) -> Tuple[float, float, float]:
vx_f = self.alpha * self.vx + (1.0 - self.alpha) * vx_cmd
vy_f = self.alpha * self.vy + (1.0 - self.alpha) * vy_cmd
wz_f = self.alpha * self.wz + (1.0 - self.alpha) * wz_cmd
dvx = float(np.clip(vx_f - self.vx, -self.max_dv, self.max_dv))
dvy = float(np.clip(vy_f - self.vy, -self.max_dv, self.max_dv))
dwz = float(np.clip(wz_f - self.wz, -self.max_dw, self.max_dw))
self.vx += dvx
self.vy += dvy
self.wz += dwz
return self.vx, self.vy, self.wz
def goal_attraction_vel(x: float, y: float, yaw: float, goal_x: float, goal_y: float, cfg: NavCfg):
"""
大角度:先转向后前进;小角度:前进时顺带转向
"""
dx = goal_x - x
dy = goal_y - y
dist = float(np.hypot(dx, dy)) + 1e-6
target_yaw = float(np.arctan2(dy, dx))
yaw_err = wrap_pi(target_yaw - yaw)
yaw_err_abs = float(np.abs(yaw_err))
thresh_rad = np.deg2rad(cfg.yaw_turn_first_deg)
# 线速度:大角度时抑制,小角度时正常
gx_w = dx / dist
gy_w = dy / dist
c = np.cos(-yaw)
s = np.sin(-yaw)
gx_b = c * gx_w - s * gy_w
gy_b = s * gx_w + c * gy_w
scale = float(np.tanh(dist) * 0.8 + 0.2)
vx_raw = cfg.k_attract * scale * gx_b
vy_raw = cfg.k_attract * scale * gy_b
if yaw_err_abs > thresh_rad:
# 大角度:先转,几乎不走(留 0.05 防止完全不动时滤波器卡死)
linear_scale = 0.05
else:
# 小角度:边走边调,角度越小线速越足
linear_scale = 1.0 - 0.85 * (yaw_err_abs / thresh_rad) ** 2
vx = vx_raw * linear_scale
vy = vy_raw * linear_scale
# 角速度:大角度时略加强,小角度时弱增益边走边调
if yaw_err_abs > thresh_rad:
wz = cfg.k_yaw_goal * 1.3 * float(np.tanh(yaw_err))
else:
wz = cfg.k_yaw_goal * 0.7 * float(np.tanh(yaw_err))
return vx, vy, wz
def blend_and_clamp(
vx_a: float, vy_a: float, wz_a: float,
vx_g: float, vy_g: float, wz_g: float,
dist_to_goal: float,
stuck: bool,
cfg: NavCfg,
dists: Optional[np.ndarray] = None,
angles: Optional[np.ndarray] = None,
):
vx = vx_a + vx_g
vy = vy_a + vy_g
wz = wz_a + wz_g
lin = float(np.hypot(vx, vy))
# 前方扇区限速:只用前方 ±20° 最小距离
if dists is not None and angles is not None and len(dists) > 0:
front = np.abs(angles) < np.deg2rad(20)
if np.any(front):
d_front = float(np.min(dists[front]))
ratio = np.clip(
(d_front - cfg.obstacle_threshold) / max(cfg.safe_distance - cfg.obstacle_threshold, 1e-6),
0.0, 1.0
)
speed_limit = ratio * cfg.max_linear
if lin > speed_limit + 1e-6:
s = speed_limit / lin
vx *= s
vy *= s
lin = float(np.hypot(vx, vy))
# 强制最小速度:未到目标且输出太小
if dist_to_goal > cfg.goal_threshold and lin < cfg.min_linear:
if lin > 1e-6:
s = cfg.min_linear / lin
vx *= s
vy *= s
else:
# 彻底趋零时:优先用目标方向(若也为零就不动)
ax = vx_g + vx_a
ay = vy_g + vy_a
an = float(np.hypot(ax, ay)) + 1e-9
vx = cfg.min_linear * ax / an
vy = cfg.min_linear * ay / an
# 卡住脱困:额外加一点“侧向+偏航”,更容易摆脱夹角/凹障碍
if stuck:
# 让它更愿意横移并转一点(避免只顶着障碍)
vx *= 0.85
vy = vy * 1.15 + 0.06 * np.sign(vy if abs(vy) > 1e-3 else 1.0)
wz += 0.10 * np.sign(wz if abs(wz) > 1e-3 else 1.0)
# 限幅
lin = float(np.hypot(vx, vy))
if lin > cfg.max_linear:
s = cfg.max_linear / lin
vx *= s
vy *= s
wz = float(np.clip(wz, -cfg.max_angular, cfg.max_angular))
return vx, vy, wz
# ===================== 主程序 =====================
def main():
model = mujoco.MjModel.from_xml_path(SCENE_PATH)
data = mujoco.MjData(model)
@@ -199,160 +442,150 @@ def main():
body_id = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_BODY, "cylinder_agent")
site_id = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_SITE, "ray_origin")
# 执行器索引
act_ids = [
mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_ACTUATOR, "vel_x"),
mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_ACTUATOR, "vel_y"),
mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_ACTUATOR, "vel_yaw"),
]
# actuators
act_vel_x = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_ACTUATOR, "vel_x")
act_vel_y = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_ACTUATOR, "vel_y")
act_vel_yaw = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_ACTUATOR, "vel_yaw")
# goal marker joint
goal_joint_id = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_JOINT, "goal_joint")
goal_qposadr = int(model.jnt_qposadr[goal_joint_id])
def hide_goal_marker():
data.qpos[goal_qposadr: goal_qposadr + 3] = [-99.0, -99.0, 0.1]
def set_goal_marker(gx: float, gy: float):
data.qpos[goal_qposadr] = gx
data.qpos[goal_qposadr + 1] = gy
data.qpos[goal_qposadr + 2] = 0.15
hide_goal_marker()
hfov_rad = np.deg2rad(CFG.hfov_deg)
depth_sim = DepthSimulator(CFG.num_sectors, hfov_rad)
vel_filter = VelocityFilter(alpha=CFG.ema_alpha, max_dv=CFG.max_dv, max_dw=CFG.max_dw)
goals: List[Tuple[float, float]] = []
goal_active = False
goals = GOAL_POINTS.copy()
goal_idx = 0 if goals else -1
vel_filter = VelocityFilter(alpha=0.70, max_dv=0.18, max_dw=0.2)
last_x, last_y = 0.0, 0.0
stuck_cnt = 0
goal_joint_id = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_JOINT, "goal_joint")
goal_qposadr = model.jnt_qposadr[goal_joint_id]
data.qpos[goal_qposadr : goal_qposadr + 3] = [-99, -99, 0.1] # 初始隐藏
# key flags
add_goal_ahead = False
add_goal_camera = False
print("=" * 55)
print("VLA 3D 导航 - 全向移动 + 前向扫描 + 避障")
print("=" * 55)
print("G: 车头前方 {:.0f}m | C: 相机视线 | 目标边界 R<{:.0f}m".format(GOAL_AHEAD_DIST, GOAL_MAX_R))
print("=" * 60)
print("MuJoCo 全向导航:仿真深度图 + DDA 避障 + 目标点")
print(f"G: 车头前方 {CFG.goal_ahead_dist:.1f}m | C: 相机视线落点 | 目标边界 R<{CFG.goal_max_r:.1f}m")
print("ESC 退出")
print("=" * 55)
print("=" * 60)
add_goal_ahead = [False]
add_goal_camera = [False]
def key_cb(keycode):
def key_cb(keycode: int):
nonlocal add_goal_ahead, add_goal_camera
if keycode == 71: # G
add_goal_ahead[0] = True
elif keycode == 67: # C: 相机视线与地面交点
add_goal_camera[0] = True
add_goal_ahead = True
elif keycode == 67: # C
add_goal_camera = True
def _goal_from_camera(viewer_handle):
"""相机视线与 z=0 地面交点(旋转相机后按 C"""
cam = viewer_handle.cam
lookat = np.array(cam.lookat)
dist = float(cam.distance)
az = np.deg2rad(float(cam.azimuth))
el = np.deg2rad(float(cam.elevation))
# 相机位置 = lookat - dist * 前向单位向量
fx = np.cos(el) * np.sin(az)
fy = -np.cos(el) * np.cos(az)
fz = np.sin(el)
cam_pos = lookat - dist * np.array([fx, fy, fz])
# 射线与 z=0 交点: cam_pos + t*[fx,fy,fz], 令 z=0
if abs(fz) < 1e-6:
return None
t = -cam_pos[2] / fz
if t < 0:
return None
pt = cam_pos + t * np.array([fx, fy, fz])
return (float(pt[0]), float(pt[1]))
def control_callback():
nonlocal goal_idx, last_x, last_y, stuck_cnt
if add_goal_ahead[0]:
add_goal_ahead[0] = False
x, y, yaw = get_agent_state(data, body_id)
gx = x + GOAL_AHEAD_DIST * np.cos(yaw)
gy = y + GOAL_AHEAD_DIST * np.sin(yaw)
gx, gy = _clamp_goal(gx, gy)
goals.clear()
goals.append((gx, gy))
goal_idx = 0
vel_filter.vx = vel_filter.vy = vel_filter.wz = 0.0
print(" 目标: ({:.2f}, {:.2f}) [G=车头前方]".format(gx, gy))
elif add_goal_camera[0]:
add_goal_camera[0] = False
g = _goal_from_camera(viewer)
if g is not None:
g = _clamp_goal(g[0], g[1])
goals.clear()
goals.append(g)
goal_idx = 0
vel_filter.vx = vel_filter.vy = vel_filter.wz = 0.0
print(" 目标: ({:.2f}, {:.2f}) [C=相机视线]".format(g[0], g[1]))
else:
print(" [C] 相机未指向地面,请调整视角后重试")
if goal_idx < 0 or not goals:
data.ctrl[act_ids[0]] = 0
data.ctrl[act_ids[1]] = 0
data.ctrl[act_ids[2]] = 0
vel_filter.vx = vel_filter.vy = vel_filter.wz = 0.0
data.qpos[goal_qposadr : goal_qposadr + 3] = [-99, -99, 0.1] # 藏起标记
return
x, y, yaw = get_agent_state(data, body_id)
goal_x, goal_y = goals[goal_idx]
dist_to_goal = np.sqrt((goal_x - x) ** 2 + (goal_y - y) ** 2)
if dist_to_goal < GOAL_THRESHOLD:
goals.clear()
goal_idx = -1
vel_filter.vx = vel_filter.vy = vel_filter.wz = 0.0
print(" 已到达,停止。按 G 设置新目标")
data.ctrl[act_ids[0]] = 0
data.ctrl[act_ids[1]] = 0
data.ctrl[act_ids[2]] = 0
data.qpos[goal_qposadr : goal_qposadr + 3] = [-99, -99, 0.1]
return
# 更新目标点标记位置
data.qpos[goal_qposadr] = goal_x
data.qpos[goal_qposadr + 1] = goal_y
data.qpos[goal_qposadr + 2] = 0.15
# 1. 前向范围扫描
distances, angles = forward_ray_scan(
model, data, body_id, site_id, NUM_RAYS, RAY_ANGLE_SPAN
)
min_d = np.min(distances)
# 2. 卡住检测
moved = np.sqrt((x - last_x) ** 2 + (y - last_y) ** 2)
if moved < STUCK_THRESH and dist_to_goal > GOAL_THRESHOLD:
stuck_cnt += 1
else:
stuck_cnt = 0
last_x, last_y = x, y
stuck = stuck_cnt > STUCK_STEPS
# 3. 避障速度(含绕行分量)
vx_a, vy_a, wz_a = obstacle_avoidance_vel(distances, angles)
# 4. 目标吸引速度
vx_g, vy_g, wz_g = goal_attraction_vel(x, y, yaw, goal_x, goal_y)
# 5. 融合、最小速度、限幅
vx, vy, wz = blend_and_clamp(
vx_a, vy_a, wz_a, vx_g, vy_g, wz_g, dist_to_goal, min_d, stuck
)
# 6. 滤波 + 速率限制(卡住时放宽)
max_dv = 0.25 if stuck else 0.18
max_dw = 0.28 if stuck else 0.2
vel_filter.max_dv = max_dv
vel_filter.max_dw = max_dw
vx, vy, wz = vel_filter.update(vx, vy, wz)
# 车体系 -> 世界系slide_x/y 沿世界轴)
c, s = np.cos(yaw), np.sin(yaw)
vx_w = vx * c - vy * s
vy_w = vx * s + vy * c
data.ctrl[act_ids[0]] = vx_w
data.ctrl[act_ids[1]] = vy_w
data.ctrl[act_ids[2]] = wz
def stop_output():
data.ctrl[act_vel_x] = 0.0
data.ctrl[act_vel_y] = 0.0
data.ctrl[act_vel_yaw] = 0.0
with mujoco.viewer.launch_passive(model, data, key_callback=key_cb) as viewer:
while viewer.is_running():
mujoco.mj_forward(model, data)
control_callback()
# ========== goal set ==========
nonlocal_vars = None # 仅为了强调这里不用闭包 nonlocal
if add_goal_ahead:
add_goal_ahead = False
x, y, yaw = get_agent_state(data)
gx = x + CFG.goal_ahead_dist * float(np.cos(yaw))
gy = y + CFG.goal_ahead_dist * float(np.sin(yaw))
gx, gy = clamp_goal(gx, gy, CFG.goal_max_r)
goals[:] = [(gx, gy)]
goal_active = True
vel_filter.reset()
print(f" 目标: ({gx:.2f}, {gy:.2f}) [G=车头前方]")
elif add_goal_camera:
add_goal_camera = False
g = goal_from_camera(viewer)
if g is None:
print(" [C] 相机未指向地面,请调整视角后重试")
else:
gx, gy = clamp_goal(g[0], g[1], CFG.goal_max_r)
goals[:] = [(gx, gy)]
goal_active = True
vel_filter.reset()
print(f" 目标: ({gx:.2f}, {gy:.2f}) [C=相机视线]")
if not goal_active or not goals:
stop_output()
vel_filter.reset()
hide_goal_marker()
mujoco.mj_step(model, data)
viewer.sync()
continue
# ========== state ==========
x, y, yaw = get_agent_state(data)
goal_x, goal_y = goals[0]
dist_to_goal = float(np.hypot(goal_x - x, goal_y - y))
if dist_to_goal < CFG.goal_threshold:
print(" 已到达,停止。按 G / C 设置新目标")
goal_active = False
goals.clear()
vel_filter.reset()
stop_output()
hide_goal_marker()
mujoco.mj_step(model, data)
viewer.sync()
continue
set_goal_marker(goal_x, goal_y)
# ========== 仿真深度图 → 扇区 → DDA ==========
depth_img = depth_sim.render(model, data, body_id, site_id)
dists, angles = depth_to_sectors(
depth_img, hfov_rad, CFG.num_sectors,
CFG.depth_z_min, CFG.depth_z_max, CFG.depth_percentile
)
# ========== stuck detect ==========
moved = float(np.hypot(x - last_x, y - last_y))
if moved < CFG.stuck_thresh and dist_to_goal > CFG.goal_threshold:
stuck_cnt += 1
else:
stuck_cnt = 0
last_x, last_y = x, y
stuck = stuck_cnt > CFG.stuck_steps
# ========== velocities ==========
vx_g, vy_g, wz_g = goal_attraction_vel(x, y, yaw, goal_x, goal_y, CFG)
vx_a, vy_a, wz_a = dda_avoidance_from_depth(dists, angles, vx_g, vy_g, CFG)
vx_b, vy_b, wz_b = blend_and_clamp(
vx_a, vy_a, wz_a, vx_g, vy_g, wz_g, dist_to_goal, stuck, CFG,
dists=dists, angles=angles
)
# ========== filter ==========
vel_filter.max_dv = CFG.max_dv_stuck if stuck else CFG.max_dv
vel_filter.max_dw = CFG.max_dw_stuck if stuck else CFG.max_dw
vx, vy, wz = vel_filter.update(vx_b, vy_b, wz_b)
# ========== body -> world for actuator ==========
c = float(np.cos(yaw))
s = float(np.sin(yaw))
vx_w = vx * c - vy * s
vy_w = vx * s + vy * c
data.ctrl[act_vel_x] = vx_w
data.ctrl[act_vel_y] = vy_w
data.ctrl[act_vel_yaw] = wz
mujoco.mj_step(model, data)
viewer.sync()