#!/usr/bin/env python3 """ ROS1 + MuJoCo VLA 3D 导航 — 全向移动 + 前向扫描 + 避障 + 目标点导航 圆柱体小车: vx, vy, wz 全向移动 前向范围扫描: mj_ray 射线检测 避障: 基于距离的势场/向量场 """ import mujoco import mujoco.viewer import numpy as np import os SCENE_PATH = os.path.join(os.path.dirname(__file__), "..", "mujoco_scenes", "cylinder_obstacles.xml") # ============ 可配置参数 ============ NUM_RAYS = 19 # 前向扫描射线数量(-90 ~ +90 deg) RAY_ANGLE_SPAN = np.pi # 扫描角度跨度 (rad) OBSTACLE_THRESHOLD = 0.45 # 障碍判定距离 (m) SAFE_DISTANCE = 0.65 # 安全距离 GOAL_THRESHOLD = 0.2 # 到达目标判定距离 MAX_LINEAR = 0.6 # 最大线速度 MAX_ANGULAR = 0.8 # 最大角速度 K_ATTRACT = 1.0 # 目标吸引力 K_REPEL = 0.6 # 障碍排斥力 K_YAW_GOAL = 0.8 # 目标对准角速度增益 MIN_LINEAR = 0.18 # 最小线速度,避免卡住 STUCK_THRESH = 0.03 # 位移阈值,低于此认为卡住 (m) STUCK_STEPS = 100 # 连续卡住步数触发绕行 GOAL_POINTS = [] # 初始无目标 GOAL_AHEAD_DIST = 2.0 # G 键:目标 = 车头前方 N 米 GOAL_MAX_R = 5.0 # 目标点边界:距离原点不超过此值 (m) def _clamp_goal(gx, gy): """目标点边界:限制在距离原点 GOAL_MAX_R 以内""" r = np.sqrt(gx * gx + gy * gy) + 1e-8 if r > GOAL_MAX_R: scale = GOAL_MAX_R / r return (float(gx * scale), float(gy * scale)) return (float(gx), float(gy)) def get_agent_state(data, body_id): """获取小车位姿: x, y, yaw""" qpos = data.qpos x, y = qpos[0], qpos[1] yaw = qpos[2] return x, y, yaw def forward_ray_scan(model, data, body_id, site_id, num_rays, angle_span): """ 前向范围扫描: 在车体前方扇形区域内发射射线 返回: (距离数组, 角度数组) """ site_xpos = data.site_xpos[site_id].copy() xmat = np.array(data.xmat[body_id]).reshape(3, 3) forward = xmat[:, 0] # 前向 (body +X) angles = np.linspace(-angle_span / 2, angle_span / 2, num_rays) distances = np.full(num_rays, 10.0) for i, theta in enumerate(angles): c, s = np.cos(theta), np.sin(theta) ray_dir = c * forward + s * xmat[:, 1] # 绕 body Z 旋转 ray_dir = ray_dir / (np.linalg.norm(ray_dir) + 1e-8) geomid = np.array([-1], dtype=np.int32) d = mujoco.mj_ray(model, data, site_xpos, ray_dir, None, 1, body_id, geomid) if d >= 0: distances[i] = d return distances, angles def obstacle_avoidance_vel(distances, angles): """ 避障速度 + 绕行分量。被挡时朝开阔方向加速,而非只排斥 返回: (vx_avoid, vy_avoid, wz_avoid) """ min_d = np.min(distances) if min_d > OBSTACLE_THRESHOLD: return 0.0, 0.0, 0.0 vx, vy, wz = 0.0, 0.0, 0.0 safe_sector = np.argmax(distances) best_theta = angles[safe_sector] for d, theta in zip(distances, angles): if d < OBSTACLE_THRESHOLD: ratio = 1.0 - d / OBSTACLE_THRESHOLD strength = K_REPEL * (ratio ** 2) vx -= strength * np.cos(theta) vy -= strength * np.sin(theta) elif d < SAFE_DISTANCE: ratio = (SAFE_DISTANCE - d) / (SAFE_DISTANCE - OBSTACLE_THRESHOLD) strength = K_REPEL * 0.15 * ratio wz += strength * np.clip(best_theta - theta, -1, 1) # 绕行:朝最开阔方向加正向速度,避免只退不绕 bypass = 0.35 vx += bypass * np.cos(best_theta) vy += bypass * np.sin(best_theta) wz += 0.4 * best_theta return vx, vy, wz def goal_attraction_vel(x, y, yaw, goal_x, goal_y): """ 目标吸引力: 在车体坐标系下计算朝目标的 vx, vy, wz 优先保持线速度,角速度仅用于微调朝向 """ dx = goal_x - x dy = goal_y - y dist = np.sqrt(dx * dx + dy * dy) + 1e-6 # 世界系下期望方向 gx_w = dx / dist gy_w = dy / dist # 转到车体系 c, s = np.cos(-yaw), np.sin(-yaw) gx_b = c * gx_w - s * gy_w gy_b = s * gx_w + c * gy_w # 线速度:朝目标,随距离平滑 scale = np.tanh(dist) * 0.8 + 0.2 vx = K_ATTRACT * scale * gx_b vy = K_ATTRACT * scale * gy_b # 角速度:弱增益,避免只转不走 target_yaw = np.arctan2(dy, dx) yaw_err = np.arctan2(np.sin(target_yaw - yaw), np.cos(target_yaw - yaw)) wz = K_YAW_GOAL * np.tanh(yaw_err) return vx, vy, wz def blend_and_clamp(vx_a, vy_a, wz_a, vx_g, vy_g, wz_g, dist_to_goal, min_d, stuck): """融合避障与目标速度,限幅,卡住时强制最小速度""" vx = vx_a + vx_g vy = vy_a + vy_g wz = wz_a + wz_g lin = np.sqrt(vx * vx + vy * vy) # 未到目标且线速度过小:强制最小速度 if dist_to_goal > GOAL_THRESHOLD and lin < MIN_LINEAR: if lin > 1e-6: vx *= MIN_LINEAR / lin vy *= MIN_LINEAR / lin else: # 融合后接近零:优先朝目标,被挡时朝避障方向 ax, ay = vx_g + vx_a, vy_g + vy_a anorm = np.sqrt(ax * ax + ay * ay) + 1e-8 vx = MIN_LINEAR * ax / anorm vy = MIN_LINEAR * ay / anorm lin = np.sqrt(vx * vx + vy * vy) if lin > MAX_LINEAR: scale = MAX_LINEAR / lin vx *= scale vy *= scale wz = np.clip(wz, -MAX_ANGULAR, MAX_ANGULAR) return vx, vy, wz class VelocityFilter: """EMA 滤波 + 速率限制,平滑控制输出""" def __init__(self, alpha=0.75, max_dv=0.15, max_dw=0.2): self.alpha = alpha # 滤波系数,越大越平滑 self.max_dv = max_dv # 每步最大线速度变化 self.max_dw = max_dw # 每步最大角速度变化 self.vx, self.vy, self.wz = 0.0, 0.0, 0.0 def update(self, vx_cmd, vy_cmd, wz_cmd): # 1. EMA 滤波 vx_f = self.alpha * self.vx + (1 - self.alpha) * vx_cmd vy_f = self.alpha * self.vy + (1 - self.alpha) * vy_cmd wz_f = self.alpha * self.wz + (1 - self.alpha) * wz_cmd # 2. 速率限制 dvx = np.clip(vx_f - self.vx, -self.max_dv, self.max_dv) dvy = np.clip(vy_f - self.vy, -self.max_dv, self.max_dv) dwz = np.clip(wz_f - self.wz, -self.max_dw, self.max_dw) self.vx += dvx self.vy += dvy self.wz += dwz return self.vx, self.vy, self.wz def main(): model = mujoco.MjModel.from_xml_path(SCENE_PATH) data = mujoco.MjData(model) body_id = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_BODY, "cylinder_agent") site_id = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_SITE, "ray_origin") # 执行器索引 act_ids = [ mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_ACTUATOR, "vel_x"), mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_ACTUATOR, "vel_y"), mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_ACTUATOR, "vel_yaw"), ] goals = GOAL_POINTS.copy() goal_idx = 0 if goals else -1 vel_filter = VelocityFilter(alpha=0.70, max_dv=0.18, max_dw=0.2) last_x, last_y = 0.0, 0.0 stuck_cnt = 0 goal_joint_id = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_JOINT, "goal_joint") goal_qposadr = model.jnt_qposadr[goal_joint_id] data.qpos[goal_qposadr : goal_qposadr + 3] = [-99, -99, 0.1] # 初始隐藏 print("=" * 55) print("VLA 3D 导航 - 全向移动 + 前向扫描 + 避障") print("=" * 55) print("G: 车头前方 {:.0f}m | C: 相机视线 | 目标边界 R<{:.0f}m".format(GOAL_AHEAD_DIST, GOAL_MAX_R)) print("ESC 退出") print("=" * 55) add_goal_ahead = [False] add_goal_camera = [False] def key_cb(keycode): if keycode == 71: # G add_goal_ahead[0] = True elif keycode == 67: # C: 相机视线与地面交点 add_goal_camera[0] = True def _goal_from_camera(viewer_handle): """相机视线与 z=0 地面交点(旋转相机后按 C)""" cam = viewer_handle.cam lookat = np.array(cam.lookat) dist = float(cam.distance) az = np.deg2rad(float(cam.azimuth)) el = np.deg2rad(float(cam.elevation)) # 相机位置 = lookat - dist * 前向单位向量 fx = np.cos(el) * np.sin(az) fy = -np.cos(el) * np.cos(az) fz = np.sin(el) cam_pos = lookat - dist * np.array([fx, fy, fz]) # 射线与 z=0 交点: cam_pos + t*[fx,fy,fz], 令 z=0 if abs(fz) < 1e-6: return None t = -cam_pos[2] / fz if t < 0: return None pt = cam_pos + t * np.array([fx, fy, fz]) return (float(pt[0]), float(pt[1])) def control_callback(): nonlocal goal_idx, last_x, last_y, stuck_cnt if add_goal_ahead[0]: add_goal_ahead[0] = False x, y, yaw = get_agent_state(data, body_id) gx = x + GOAL_AHEAD_DIST * np.cos(yaw) gy = y + GOAL_AHEAD_DIST * np.sin(yaw) gx, gy = _clamp_goal(gx, gy) goals.clear() goals.append((gx, gy)) goal_idx = 0 vel_filter.vx = vel_filter.vy = vel_filter.wz = 0.0 print(" 目标: ({:.2f}, {:.2f}) [G=车头前方]".format(gx, gy)) elif add_goal_camera[0]: add_goal_camera[0] = False g = _goal_from_camera(viewer) if g is not None: g = _clamp_goal(g[0], g[1]) goals.clear() goals.append(g) goal_idx = 0 vel_filter.vx = vel_filter.vy = vel_filter.wz = 0.0 print(" 目标: ({:.2f}, {:.2f}) [C=相机视线]".format(g[0], g[1])) else: print(" [C] 相机未指向地面,请调整视角后重试") if goal_idx < 0 or not goals: data.ctrl[act_ids[0]] = 0 data.ctrl[act_ids[1]] = 0 data.ctrl[act_ids[2]] = 0 vel_filter.vx = vel_filter.vy = vel_filter.wz = 0.0 data.qpos[goal_qposadr : goal_qposadr + 3] = [-99, -99, 0.1] # 藏起标记 return x, y, yaw = get_agent_state(data, body_id) goal_x, goal_y = goals[goal_idx] dist_to_goal = np.sqrt((goal_x - x) ** 2 + (goal_y - y) ** 2) if dist_to_goal < GOAL_THRESHOLD: goals.clear() goal_idx = -1 vel_filter.vx = vel_filter.vy = vel_filter.wz = 0.0 print(" 已到达,停止。按 G 设置新目标") data.ctrl[act_ids[0]] = 0 data.ctrl[act_ids[1]] = 0 data.ctrl[act_ids[2]] = 0 data.qpos[goal_qposadr : goal_qposadr + 3] = [-99, -99, 0.1] return # 更新目标点标记位置 data.qpos[goal_qposadr] = goal_x data.qpos[goal_qposadr + 1] = goal_y data.qpos[goal_qposadr + 2] = 0.15 # 1. 前向范围扫描 distances, angles = forward_ray_scan( model, data, body_id, site_id, NUM_RAYS, RAY_ANGLE_SPAN ) min_d = np.min(distances) # 2. 卡住检测 moved = np.sqrt((x - last_x) ** 2 + (y - last_y) ** 2) if moved < STUCK_THRESH and dist_to_goal > GOAL_THRESHOLD: stuck_cnt += 1 else: stuck_cnt = 0 last_x, last_y = x, y stuck = stuck_cnt > STUCK_STEPS # 3. 避障速度(含绕行分量) vx_a, vy_a, wz_a = obstacle_avoidance_vel(distances, angles) # 4. 目标吸引速度 vx_g, vy_g, wz_g = goal_attraction_vel(x, y, yaw, goal_x, goal_y) # 5. 融合、最小速度、限幅 vx, vy, wz = blend_and_clamp( vx_a, vy_a, wz_a, vx_g, vy_g, wz_g, dist_to_goal, min_d, stuck ) # 6. 滤波 + 速率限制(卡住时放宽) max_dv = 0.25 if stuck else 0.18 max_dw = 0.28 if stuck else 0.2 vel_filter.max_dv = max_dv vel_filter.max_dw = max_dw vx, vy, wz = vel_filter.update(vx, vy, wz) # 车体系 -> 世界系(slide_x/y 沿世界轴) c, s = np.cos(yaw), np.sin(yaw) vx_w = vx * c - vy * s vy_w = vx * s + vy * c data.ctrl[act_ids[0]] = vx_w data.ctrl[act_ids[1]] = vy_w data.ctrl[act_ids[2]] = wz with mujoco.viewer.launch_passive(model, data, key_callback=key_cb) as viewer: while viewer.is_running(): mujoco.mj_forward(model, data) control_callback() mujoco.mj_step(model, data) viewer.sync() if __name__ == "__main__": main()